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A B S T R A C T

In decision making under risk, adults tend to overestimate small and underestimate large probabilities (Tversky
& Kahneman, 1992). This inverse S-shaped distortion pattern is similar to that observed in a wide variety of
proportion judgment tasks (see Hollands & Dyre, 2000, for review). In proportion judgment tasks, distortion
patterns tend not to be fixed but rather to depend on the reference points to which the targets are compared.
Here, we tested the novel hypothesis that probability distortion in decision making under risk might also be
influenced by reference points—in this case, references implied by the probability range. Adult participants were
assigned to either a full-range (probabilities from 0–100%), upper-range (50–100%), or lower-range (0–50%)
condition, where they indicated certainty equivalents for 176 hypothetical monetary gambles (e.g., “a 50%
chance of $100, otherwise $0”). Using a modified cumulative prospect theory model, we found only minimal
differences in probability distortion as a function of condition, suggesting no differences in use of reference
points by condition, and broadly demonstrating the robustness of distortion pattern across contexts. However,
we also observed deviations from the curve across all conditions that warrant further research.

1. Introduction

1.1. Cumulative prospect theory framework

Imagine a gamble involving a 50% chance of winning $100,
otherwise $0. One's certainty equivalent (CE) for such a gamble is de-
fined as the monetary outcome identified by the individual as being as
attractive as playing the gamble, thus reflecting the overall value of the
gamble to the individual. According to cumulative prospect theory
(CPT), a dominant descriptive theory of decision-making under risk
(Tversky & Kahneman, 1992; see Glöckner & Pachur, 2012, for com-
parison to other models), CEs for simple gambles with two possible non-
negative outcomes represented as (x1, p; x2, 1 - p), with probabilities
expressed as decimal values from 0 to 1 can be modeled1 as:

v CE v x w p v x w p( ) ( ) ( ) ( )(1 ( ))1 2= + (1)

where x1 > x2≥ 0 and 0≤ p≤1.
One component of CPT reflected in the equation is that outcomes

(including the certainty equivalent) and probabilities are transformed
into subjective values and decision weights respectively before they are

combined. A second component of CPT is that the subjective value of
the CE is essentially the sum of the subjective value of each gamble
outcome multiplied by its corresponding decision weight. The trans-
formation of outcomes into subjective values is assumed to follow a
concave curve for gains (reflecting diminishing sensitivity as outcome
magnitude increases) and a convex curve for losses, with the curve
being steeper for losses than for gains (see Fig. 1a for the curve asso-
ciated with gains). The transformation of probabilities into decision
weights is assumed to follow an inverse S-shaped curve, reflecting an
overweighting of small probabilities (e.g., behaving as if a 10% chance
is more likely than it actually is) and an underweighting of medium to
large ones (see Fig. 1b). These general forms of distortion curves have
been used to explain a complex pattern of behavior: risk aversion for
high probability gains and risk seeking for high probability losses, but
the reverse for low probability gains and losses (Tversky & Kahneman,
1992).

With regard to specific value and probability weighting functions,
the CPT value function (we focus on the function for gains; an addi-
tional parameter is needed to accommodate losses) is typically specified
as (Tversky & Kahneman, 1992; see Fox & Poldrack, 2014, for review):
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v x x( ) = (2)

where α > 0. The value parameter α captures degree of curvature from
the identity line: α=1 is the identity relationship, α < 1 is a concave
curve (as shown in Fig. 1a), and α > 1 is a convex curve. For prob-
ability weighting, several different specifications of the inverse S-
shaped curve have been proposed (for reviews, see Fox & Poldrack,
2014; Stott, 2006), including the one-parameter function originally
proposed by Tversky and Kahneman (1992):

w p p p p( ) ( /( (1 ) ))1/= + (3)

where γ > 0. With the one-parameter function, the single parameter γ
determines both degree of curvature and where the curve crosses the
identity line (i.e., curvature and crossover are not independent). An
alternative function with two parameters is one of the most commonly
used (see Fox & Poldrack, 2014) because its parameters have a more
natural interpretation. It has been shown to generally provide a better
fit to individual-level data (Cavagnaro, Pitt, Gonzalez, & Myung, 2013).
The alternative is Lattimore, Baker, & Witte's (1992; see also Goldstein
& Einhorn, 1987; Gonzalez & Wu, 1999) function:

w p p p p( ) /( (1 ) )= + (4)

where δ > 0 and γ > 0. The parameter γ captures degree of curvature
from the identity line: γ=1 is the identity relationship, γ < 1 is an
inverse S-shaped curve (as shown in Fig. 1c), and γ > 1 is an S-shaped
curve. The parameter δ captures elevation of the entire curve, which
largely determines where it crosses the identity line: δ=1 crosses at a
probability of .5, while δ > 1 crosses above .5 and δ < 1 crosses
below .5 (examples shown in Fig. 1d). While CPT as proposed by
Tversky and Kahneman (1992) includes among its key elements that the
value curve is concave for gains and that the probability weighting
curve is inverse S-shaped, the parameters of the CPT equation are not
formally constrained to being below 1, and individual-level estimates
are often above 1 (e.g., Gonzalez & Wu, 1999; Patalano, Saltiel,
Machlin, & Barth, 2015). As with past decision making work, we gen-
erally focus on the inverse S-shaped pattern here, but all equations
discussed can produce S-shaped curves as well, and thus can be used to
describe this less common pattern too.

A number of psychological explanations for the inverse-S shape of
the probability weighting curve have been proposed. For example,
Tversky and Kahneman (1992) proposed the notion of diminishing
sensitivity to probabilities as a function of their distance from reference
points of impossibility and certainty (namely 0 and 100%). According
to venture theory, proposed by Hogarth and Einhorn (1990), one

Fig. 1. (a) Value function v(x)= xα with α=0.77 (black curve; for gains only). (b) Probability weighting function w(p)= δpγ/(δpγ+(1− p)γ) with δ (eleva-
tion)= 0.77, and γ (curvature)= 0.53 (black curve; medians from Patalano et al., 2015). (c) Probability weighting function where δ is held constant (at δ = 1) and
only γ varies across curves (resulting in a change in curvature). (d) Probability weighting function where γ is held constant (at γ=0.53) and only δ varies across
curves (resulting in a change in elevation).
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anchors on a stated probability and then adjusts by mentally simulating
other possible values. The adjustment is generally expected to be in the
direction in which there are more possible values, thereby giving rise to
over- and underestimation patterns. Rottenstreich and Hsee (2001) (but
see Klein et al., 2018) developed an affect-based account of probability
weighting by which hope drives overestimation of low probabilities and
fear drives underestimation of large probabilities. Though Tversky and
Kahneman's account is inspired by psychophysics (Kahneman &
Tversky, 1984), all of the explanations described thus far generally
assume that the pattern of bias arises from inputs and mental processes
specific to decision making, rather than from broader characteristics of
cognition. These explanations also generally assume that the mapping
of probability magnitudes to decision weights is fixed (e.g., not de-
pendent on context) and that probability weighting can be accom-
modated by a single psychological explanation. To our knowledge, only
Gonzalez and Wu (1999) proposed distinct psychological sources of
probability weighting curvature and elevation, namely, that curvature
is associated with discrimination of probabilities (greater curvature
indicates less discrimination), while elevation is associated with the
overall attractiveness of gambling to the individual (greater elevation
indicates greater attractiveness). Finally, in Stewart, Chater, and
Brown's (2006; Stewart, 2009; Stewart, Reimers, & Harris, 2015) de-
cision by sampling theory—an approach that does not assume a fixed
mapping—the probability weighting curve is thought to emerge dyna-
mically in some contexts as a result of evaluating probabilities by
ranking them relative to other probabilities sampled from the decision
environment (but see Alempaki et al., in press, for alternative account).

1.2. Proportion judgment approach

Though not frequently discussed in the decision literature, similar
distortion patterns have been found in a wide variety of cognitive,
perceptual, and motor tasks varying in task demands and types of sti-
muli (for reviews, see Hollands & Dyre, 2000; Zhang & Maloney, 2012).
What these tasks have in common is that they can be conceptualized as
involving proportion judgment. For example, in a task involving jud-
ging the proportion of black dots in a visual display of black and white
dots, individuals tend to overestimate small proportions of black dots
(e.g., saying .30 or 30% when the correct response is .20 or 20%) and to
underestimate large ones, showing a symmetrical (that is, with a
crossover of the identity line at .50) inverse S-shaped pattern (Varey,
Mellers, & Birnbaum, 1990). Similarly, in a number line task involving
the placement of numbers on a line labeled only at its endpoints (e.g.,
with 0 and 100), participants tend to overestimate the position of small
numbers and underestimate the position of large ones, again showing
the symmetrical inverse S-shaped pattern (e.g., Cohen & Blanc-
Goldhammer, 2011; Slusser & Barth, 2017; Sullivan, Juhasz, Slattery, &
Barth, 2011; see also Barth, Lesser, Taggart, & Slusser, 2015; Zax,
Slusser, & Barth, 2019). Although less frequently, asymmetrical pat-
terns of bias (e.g., an inverse S-shaped curve with a crossover at .30)
have also been observed (e.g., Spence, 1990). These findings have
raised the possibility of common psychological explanations across
domains in which the task can be conceptualized as one of proportion
judgment.

Hollands and Dyre (2000) developed a model in the psychophysical
tradition, called the cyclical power model (CPM), that accounts for
estimation biases resulting from a wide variety of perceptually based
tasks. It has recently been extended to abstract symbolic representa-
tions of quantities such as the number line task (Barth & Paladino,
2011; Cohen & Blanc-Goldhammer, 2011; Sullivan et al., 2011). In the
CPM, bias in proportion estimation is thought to originate from bias in
the estimation of each part's magnitude, in that “psychological magni-
tude” is not the same as true physical magnitude. The CPM builds on
Stevens' Law (Stevens, 1957) which describes the relationship between
the estimated or perceived magnitude of a stimulus and its actual
magnitude. Steven's Law is a power function:

y x= (5)

where x > 0, δ > 0, and γ > 0. In this equation, γ quantifies bias
associated with judgments of a particular stimulus continuum (e.g.
brightness or area) and δ is a scaling parameter. Spence (1990) ex-
tended Steven's power law (Eq. 5) to proportion judgments, demon-
strating that one's judgment of the proportion (P) of a part to a whole
(e.g., the relative area of one square to the whole of two squares) can be
expressed as:

P x x x x( ) /( (1 ) )= + (6)

where 0≤ x≤1, 1 reflects the whole, x reflects the true proportion of
the stimulus to the whole, and γ refers to the same value used in Ste-
vens' Law (Eq. 5). Spence's power model produces a symmetrical in-
verse S-shaped curve when γ < 1 and an S-shaped curve when γ > 1.

Hollands and Dyre's (2000) CPM is a modified and expanded version
of Spence's power model (Eq. 6) in which stimuli can be expressed in
any unit of magnitude (e.g., 20 out of a whole of 80, or 4 out of a whole
of 16, rather than only as the proportion .25 out of a whole of 1), and in
which reference points (which can vary by individual and context) can
be used to constrain the range over which estimates of magnitude are
made. Hollands and Dyre (2000) proposed that when judging a pro-
portion, an individual might use two bounding reference points, re-
sulting in the symmetrical one-cycle pattern of bias (as in Fig. 2). Such a
pattern might arise, for example, in a number line task if one judged the
location of ‘20’ on a line bounded by the labels 0 to 100, using only
these two bounding reference points. Hollands and Dyre further pro-
posed that additional intermediate reference points might also be used,
leading to multi-cycle bias patterns, such as the symmetrical two-cycle
pattern in Fig. 2 (which assumes one additional middle reference
point). Such a pattern would arise in the number line task if one used
the middle of the line as an additional reference point. In this case, ‘20’
would be estimated with reference to the range between 0 and 50,
while a number such as ‘65’ would be estimated with reference to the
range between 50 and 100. Two-cycle bias patterns have been observed
in diverse perceptual judgments (see Hollands & Dyre, 2000) and also
in children's number-line estimates, with developmental change arising
in part from the increasing use of additional reference points with age
(Barth & Paladino, 2011; Cohen & Sarnecka, 2014; Link, Huber, Nuerk,
& Moeller, 2014; Rouder & Geary, 2014; see Slusser, Santiago, & Barth,
2013, for details). The CPM can explain a wide range of symmetrical
(and some asymmetrical) multi-cycle patterns through the mechanism
of reference points.

Hollands and Dyre developed a general equation that can

Fig. 2. Curves generated using Hollands and Dyre's (2000) cyclical power
model (for all curves, γ=0.40), including a one-cycle curve, a two-cycle curve
(which assumes use of an additional middle reference point); and a mixed one-
cycle and two-cycle pattern (with equal weight given to each pattern). Unlike
probability weighting curves in Fig. 1, one- and two-cycle curves here are al-
ways symmetrical around .5.
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accommodate any defined number of reference points (though we focus
on one-cycle and two-cycle patterns here, with two and three reference
points respectively). They also developed a mixed model to accom-
modate situations in which one set of reference points is used for one
subset of responses and a different set of reference points is used for
another subset of responses (as in Fig. 2 which illustrates a combination
of a one-cycle and a two-cycle pattern). According to the CPM, when
observers respond using two or more reference points in their judg-
ments of the relationship of a part to a whole, proportion estimates are
predicted by:

P x x R x R R x R R R R
R R

( ) (( ) /(( ) ( ) )) ( )/( )
/

i i i i i n

i n

1 1 1 0

1

= +
+ (7)

where Ri-1≤ x≤ Ri, x is the stimulus magnitude, R is a vector of re-
ference values from R0 to Rn (where R0 and Rn are the boundary values
for the entire range), Ri-1 is the lowerbound and Ri is the upperbound of
the immediate range containing x, and P(x) is the estimated proportion
that x represents of the whole. If there are only two reference points (a
one-cycle pattern), the first part of the expression (until the multi-
plication sign) returns a proportion between 0 and 1, and the rest of the
equation reduces to identity operations. However, if there are three
equally-spaced reference values (a two-cycle pattern), the first part of
the equation returns a proportion between 0 and 1 (e.g., .8), the ex-
pression (Ri - Ri-1)/(Rn - R0) (which always equals .5 in the case of three
equally-spaced reference points) scales the proportion to the reference
range (e.g., .5 * .8= .4), and the expression Ri-1/Rn adds the proportion
to the lower boundary of the reference range (which is either 0 or .5 in
the case of three equally-spaced reference points). Further, a mixed
model that incorporates the use of two reference points for some
judgments and three for others can be written simply as:

P x( ) (one-cycle equation) (1 )(two-cycle equation)= + (8)

where 0≤ω≤1, and where the first equation assumes two reference
points and the second assumes three. The ω is an estimated parameter
that reflects the weight assigned to each pattern in the best-fitting
model (where ω=1 indicates a pure one-cycle pattern, and ω=0 in-
dicates a pure two-cycle pattern). Noteworthy about the mixed model is
that it predicts bias patterns that are not necessarily symmetrical (be-
cause a weighted sum of two symmetrical patterns is not always sym-
metrical) and thereby is able to explain some asymmetrical patterns
without need for any additional parameter (other than the weighting
parameter) or psychological account of the crossover.

1.3. Integrating proportion judgment approach into decision models

It should now be apparent that probability distortion patterns in
decision making are similar to those seen in other domains for which a
proportion judgment account has been proposed and that the equations
that have been fit to data are also very similar across domains. In
particular, the probability weighting functions introduced earlier (Eqs.
3 and 4) are both identical to Spence's power model equation (Eq. 6)
with the exception that each of the probability weighting functions
includes a means of producing the asymmetrical distortion pattern (e.g.,
by raising or lowering the curve; see Fig. 1c) often seen in decision
making.2 While proportion judgment does not provide an obvious ex-
planation for the elevation of the probability weighting curve (which
may have a distinct psychological source, such as the attractiveness of
gambling to the individual; see Gonzalez & Wu, 1999)—it does offer a
straightfoward account of the shape of the curve. We are interested in
the intriguing question of whether adopting a proportion judgment
approach might lead to new insights regarding probability distortion in

decision making, in particular regarding the shape of the probability
weighting curve.

According to Spence's power model (Eq. 6), distortion in proportion
judgment arises from imprecision in the estimation of magnitudes
contributing to the judgment. Thus one insight from a proportion
judgment perspective, although not the focus of the present work, is
that there might be a link between our intuitive magnitude system (see
Libertus & Brannon, 2009, for review) and distortion in the use of
numbers in decision making. Researchers have begun to study the link
between intuitive magnitude skills (e.g., judging numerosity of dots in a
display) and use of numbers in decision making (e.g., Patalano et al.,
2015; Peters, Slovic, Västfjäll, & Mertz, 2008; Schley & Peters, 2014; see
also Reyna, Nelson, Han, & Dieckmann, 2009; Winman, Juslin, Lindzog,
Nilsson, & Kerimi, 2014), providing initial evidence that several in-
tuitive magnitude estimation measures are related to value and prob-
ability distortion. Numeracy measures tapping into fluency in proces-
sing part-whole relationships (e.g., difficulty translating from fractions
to percentages) have also been associated with value and probability
distortion and with overall CPT model fit and response reliability (e.g.,
Patalano et al., 2015; Schley & Peters, 2014). These findings provide
initial evidence that value and probability distortion in decision making
might arise not (only) from psychological sources specific to decision
making but, rather, from a more general property of an intuitive
magnitude system involved in a wide range of magnitude and propor-
tion-related judgments, evidence consistent with a proportion judgment
account.

The focus of the present work is a prediction arising specifically
from application of the cyclical power model to the distortion of
probabilities in decision making. According to the CPM, whether a
value is over- or underestimated depends not on its absolute magnitude
but rather on the proportional relationship between it and the reference
range to which it is compared. The type of cyclical pattern of bias that
emerges in any context (e.g., one-cycle vs. two-cycle patterns) depends
on the number of reference points used. In decision making, probability
weighting curves are assumed to follow a one-cycle pattern, with an
inverse S-shaped curve extending across the full range of values. A
novel prediction that follows if the CPM is applied to decision making is
that contexts that facilitate the use of additional reference points during
the evaluation of probabilities should give rise to multi-cycle patterns of
probability distortion. For example, while a one-cycle pattern might
emerge when only 0 and 100 are used as reference points in probability
weighting (Fig. 3a), a two-cycle pattern might emerge when 50 is
available as an additional reference point (Fig. 3b). Instead, if reference
values do not constrain proportion judgment in decision making con-
texts, or if proportion judgment does not underlie the interpretation of
probabilities in decision making, then efforts to influence reference
points should have little effect on distortion patterns. This specific
prediction has not yet been tested, although there is considerable evi-
dence that how a probability is evaluated fluctuates in response to one's
recent experience with other probabilities in the environment (e.g.,
Ungemach, Stewart, & Reimers, 2011; Wedell, 1991; Windschitl &
Chambers, 2004).

1.4. Developing a cyclical CPT equation

Towards testing whether a one- or two-cycle probability weighting
pattern might better fit CE data, we developed a modified probability
weighting function by incorporating elements of the CPM into an ex-
isting probability weighting function. We took Lattimore et al.'s (1992)
two-parameter probability weighting function (Eq. 4) as our starting
point. We used this function rather than, for example, Tversky and
Kahneman's (1992) one-parameter function because the Lattimore et al.
function is more commonly used in the field (see Fox & Poldrack,
2014), it better fits individual-level data and, importantly, it reflects our2 One earlier quantitative description of probability distortion in decision-

making (Karmarkar, 1978) is formally identical to Spence's (1990) proportion
judgment model, though its psychological derivation was unrelated.

C. Xing, et al. Acta Psychologica 197 (2019) 39–51

42



perspective that probability weighting curvature and elevation may
have different psychological sources. From this starting point, the
equation was generalized to accept input of any unit of magnitude (e.g.,
80 out of 100 rather than only .8 out of 1) for consistency with the CPM
(Eq. 7; although this choice does not affect model predictions), and we
introduced reference points, resulting in:

w p p R p R R p R R R R R R( ) ( ( ) /( ( ) ( ) )) ( )/( ) /i i i i i n i n1 1 1 0 1= + +

(9)

In the above, we continue to use p as the expression for the probability
input to differentiate it from the value input in the larger CPT equation.
But p now refers to the numerator of the ratio implied by the percentage
sign (such as ‘60’ for 60/100), rather than already being translated into
a proportion. Two versions of this equation were used in the present
work. In the one-cycle CPT model (a shorthand for a CPT equation with
a one-cycle probability weighting function), 0 and 100 are assumed to
be the only reference values used by the decision maker. The one-cycle
version is functionally the same as the Lattimore et al. equation (the
parts after the multiplication sign are identity operations in the one-
cycle model) and can produce a standard probability weighting curve
(an inverse S-shape) across the full 0–100 scale range (as in Fig. 3a). In
a two-cycle CPT model, 50 is included as an additional reference point,
such that the equation can produce an inverse S-shape between 0 and
50 that is repeated between 50 and 100 (as in Fig. 3b). Because there is
also an elevation parameter in both versions to accommodate the
asymmetrical crossover commonly seen in decision making research,
any inverse S-shape need not be symmetrical to be well fit by the
equation; that is, the equation accommodates crossovers in locations
other than the midpoint of each S-shaped curve.

The CPT equation was thus modified as follows. We started with the
general specification of the CPT model (Eq. 1) shown earlier:

v CE v x w p v x w p( ) ( ) ( ) ( )(1 ( ))1 2= +

We then elaborated the value and probability weighting functions using
the original value function (Eq. 2) and the CPM-inspired probability
weighting function (Eq. 9):

CE x p R p R R p R R R R
R R x p R p R R p R R

R R R R

( ( ) /( ( ) ( ) ) ( )/( )
/ ) (1 ( ( ) /( ( ) ( ) ) ( )

/( ) / ))

i i i i i n

i n i i i i i

n i n

1 1 1 1 0

1 2 1 1 1

0 1

= +
+ + +

+ (10)

And we raised both sides by 1/α to isolate the CE dependent measure:

CE x p R p R R p R R R R
R R x p R p R R p R
R R R R R

( ( ( ) /( ( ) ( ) ) ( )/( )
/ ) (1 ( ( ) /( ( ) ( ) ) (
)/( ) / )))

i i i i i n

i n i i i i

i n i n

1 1 1 1 0

1 2 1 1

1 0 1 1/

= +
+ + +

+ (11)

As will be described in Section 1.5, we used this equation to test
whether CE responses made by each individual in our study were better
fit by a one-cycle CPT model (Eq. 11 with R0= 0 and R1= 100) or a
two-cycle CPT model (R0= 0, R1= 50, and R2= 100) in each study
condition.

1.5. Overview of present study

The goal of the present study was to attempt to manipulate use of
two versus three reference points for estimating probability in a gam-
bling task and to assess fit of one-cycle CPT versus two-cycle CPT
models to individual certainty equivalent data. Specifically, partici-
pants responded to a series of 176 gambles and CE data were derived
from participant responses. Participants in a first sample were assigned
either to a full-range condition, in which probabilities (presented as
percentages) ranged from 0 to 100% as they typically do in tasks of this
type, or to an upper-range condition, in which probabilities ranged
from 50 to 100%. In these conditions, participants were not explicitly
told the probability range, but were expected to infer it from the
gambles. In order to extend the findings to a different range and to
ensure that the range was known, a new sample of participants was
assigned to a lower-range condition in which probabilities ranged from
0 to 50%, and participants were explicitly instructed that all stated
probabilities would be in this range. The purpose of the range manip-
ulation across conditions was to influence reference points. We ex-
pected individuals in the full-range condition to be most likely to use
only 0 and 100 as reference points, and those in the upper-range and
lower-range conditions to be more likely to use 50 as an additional
reference point. In all other ways, the full-range condition and the two
“limited-range” conditions were the same. For ease of presentation, the
three conditions are reported as a single study. Two short numeracy
scales were also administered to all participants to assess their general
skills with number.

In the full-range condition, we expected the CEs for most individuals
to be best fit by a one-cycle CPT model (Fig. 3a). In the two limited
range conditions, if intermediate reference points are not used, we ex-
pected data to also be better fit by a one-cycle CPT model. That is, CEs
for the lower-range condition would reflect a distortion pattern
matching the lower half of the inverse S-shape of the probability
weighting curve, while CE's in the upper-range condition would reflect
a distortion pattern matching the upper half of the same curve. If, in-
stead, an intermediate reference point is used, we expected data in the
limited-range conditions to be better fit by a two-cycle CPT model
(Fig. 3b). In this case, CEs in the lower-range condition would reflect a
single inverse S-shaped curve (the lower half of the two-cycle pattern),

Fig. 3. (a) One-cycle probability weighting curve which assumes that reference points at the boundaries of the scale are used for proportion judgment. (b) Two-cycle
probability weighting curve which assumes the use of an additional middle reference point.
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as would CEs in the upper-range condition (in this case, reflecting the
upper half of the two-cycle pattern). We expected that such two-cycle
curves, if present, would otherwise be similar to the one-cycle curve for
the full-range condition. That is, the use of an additional reference point
should affect the number of cycles in the probability weighting curve
but not its degree of curvature or elevation (or the curvature associated
with the value function; i.e., parameter estimates should not change). It
is possible that there would also be some additional differences across
conditions resulting from exposing participants to different ranges of
probabilities (i.e., distinct from their choice of reference points), but we
did not have specific predictions along these lines.

Though not the central focus, we also conducted analyses to assess
the extent to which some individuals in the full-range condition might
have spontaneously used a middle reference point. That is, we con-
sidered how many individuals in the full-range condition had CE data
better fit by a two-cycle than a one-cycle CPT model. Additionally, after
conducting initial analyses, we developed a mixed-cycle CPT model to
assess whether such a model might explain patterns in the data better
than either a one- or a two-cycle model alone. Such a model would be
expected to fit CE data well if in one or more conditions a middle re-
ference point was used on only a subset of trials. Finally, deviations of
the probability weighting curve (and also the value curve) from the
identity line, as well as model fitting error, were expected to be nega-
tively correlated with numeracy. Such a finding would be consistent
with past work (using a full-range condition; Patalano et al., 2015) and
would provide further evidence of a relationship between probability
distortion and intuitive number skill more generally.

2. Method

2.1. Participants

A total of 137 undergraduates (56 male, 79 female, 2 not reported;
18–22 years old) received introductory psychology course credit or
monetary compensation for their participation. Participants in a first
group were randomly assigned to either the full-range (n=44) or
upper-range (n=45) condition (with no explicit statement of prob-
ability range). A second group (run after the first group) was assigned to
the lower-range (n=48) condition (with explicit statement of prob-
ability range). Two additional participants came to the lab but did not
complete the gambling task. Of those completing the gambling task, 9
participants were excluded from final data analysis based on the a priori
elimination rule of having a large number of missing trials (> 30 out of
176 trials), and 1 additional participant was excluded for extreme root

mean square error (RMSE) values (> 10 SD above the mean) for both
CPT models. Analyses were based on the remaining 127 participants
(full-range: n=40; upper-range: n=42; lower-range: n=45; 1 of the
latter did not complete the numeracy scales and was excluded just from
that analysis). Across conditions, there were no differences in the
number of missing trials, F(2,124)= 0.87, p= .421, or in response
reliability for the 11 pairs of repeated gambles (see 2.2. Procedure
section), F(2,124)= 0.18, p= .837.

2.2. Procedure

Participants came individually to the lab for a two-hour session.
Written informed consent of the participant was obtained at the start of
each laboratory session. Participants then completed the gambling task
for approximately 60min, several tasks that were unrelated to the
present one and that served as filler activities for approximately 30min,
and two numeracy measures for approximately 5min. Participants
completed the tasks individually at their own pace on the computer in
the laboratory. An experimenter sat nearby to monitor the study, pro-
vide instructions, and answer any questions.

2.2.1. Gambling task
The gambling task was modeled after Gonzalez and Wu (1999; see

also Tversky & Kahneman, 1992). The task, as shown in Fig. 4a and b
(which represent a single trial), was to compare a stated gamble (e.g.,
“95% chance of $100, otherwise $0”) to each of six “sure-thing” dollar
amounts and to indicate a preference between the gamble and each
sure-thing, and then to do the same with a narrower range of dollar
values determined based on one's responses to the first screen. The
certainty equivalent for the gamble was recorded as the midpoint be-
tween the dollar values on the second screen representing where the
individual switched from preferring the sure-thing to preferring the
gamble. Details of this task follow. Each participant completed 176
trials of the gambling task (165 unique trials and 11 repeated ones).

2.2.1.1. Gambling stimuli. A total of 15 pairs of dollar values were
crossed with 11 probabilities to create a set of 165 unique two-outcome
gambles. The pairs of dollar values were 25–0, 50–0, 75–0, 100–0,
150–0, 200–0, 400–0, 800–0, 50–25, 75–50, 100–50, 150–50, 150–100,
200–100, and 200–150. Probabilities varied by condition. In the full-
range condition, the 11 probabilities (in a range between 0% and
100%) were 1%, 5%, 10%, 25%, 39%, 50%, 61%, 75%, 90%, 95%, and
99%. In the upper-range condition, the probabilities (in a range
between 50% and 100%) were 51%, 53%, 55%, 63%, 70%, 75%,

Fig. 4. In the gambling task, participants were instructed to choose a preference between a gamble and each sure-thing option presented. Each trial consisted of: (a)
an initial display (with example responses shown as Xs here) and (b) a follow-up display with sure-thing values determined by responses to the initial display. In this
example, the CE for this gamble would be 70, because this is the midpoint of the dollars where the participant “crossed over” from preferring a sure-thing to
preferring a gamble on the second display.
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80%, 87%, 95%, 97%, and 99%. In the lower-range condition, the
probabilities (in a range between 0 and 50%) were 1%, 3%, 5%, 13%,
20%, 25%, 30%, 37%, 45%, 47%, 49%. The proportional spacing of
probabilities was matched between conditions (e.g., 10% out of 100%
matched 5% out of 50%), with the exception that a few values were
adjusted so that the number of values divisible by five would be about
the same in all conditions. Eleven gambles, one at each probability
level, were repeated as a reliability check, resulting in a total of 176
gambling trials. Ten pseudorandom orders of the trials were created,
with no gamble appearing twice in a row.

2.2.1.2. Task instructions and procedure. Each participant read task
instructions on the screen, paraphrased the instructions back to the
experimenter, and had the opportunity to ask any questions before
beginning the task. A printed sheet of instructions was also available for
reference throughout the experiment. Each trial began with a display
similar to that shown in Fig. 4a. The sure-thing amounts ranged from
the largest possible gamble outcome to the smallest (i.e., from $100 to
$0 in Fig. 4a), with intermediate values at equally spaced intervals.
Participants were told that it was expected that they would “cross over”
from preferring the sure-thing to preferring the gamble at some point
for each display. When done with the first display, the participant
proceeded to a follow-up display (for the same trial; they could then no
longer return to the previous display), which presented a narrower
range of sure-thing values (the new endpoints were the sure-thing
values bracketing the crossover point from the previous display, e.g.,
the endpoints might be from $80 to $60; see Fig. 4b). This procedure is
one of several used to obtain CEs in the decision literature. It is known
to elicit more reliable responses than more direct procedures (e.g.,
directly asking for the overall value of the gamble; see Fox & Poldrack,
2014, for review). The instructions were the same across conditions
except that, in the lower-range condition, participants were explicitly
told (and expected to repeat back to the experimenter during the
paraphrasing of the instructions) that the probabilities ranged between
0 and 50%. Any participants who did not spontaneously offer this range
when paraphrasing the instructions was asked for it explicitly by the
experimenter. A participant who could not accurately state the range
was asked to re-read the instructions and the process was repeated (no
one needed to re-read the instructions more than once).

2.2.2. Numeracy scales
Lipkus, Samsa, and Rimer's (2001) 11-item numeracy scale and

Weller et al.'s (2013) 8-item abbreviated numeracy scale were ad-
ministered. The 5 items common to both scales were administered once,
for a total of 14 items across both scales. All items on Lipkus et al.'s
scale involve manipulating percentages, proportions, and fractions
(e.g., “If the chance of getting a disease is 20 out of 100, this would be
the same as having a ____% chance of getting the disease.”). The Weller
et al. scale also includes several word problems that are more difficult
(e.g., “If it takes five machines five minutes to make five widgets, how
long would it take 100 machines to make 100 widgets?”), but that are
less directly related to manipulating part-whole relationships. Paper
and pencil were available during this task and participants were free to
jot down any computations.

3. Results

3.1. Gambling data processing

For the gambling task, certainty equivalents were obtained for each
of the 176 trials for each participant based on their choices for each of
the gambles. A certainty equivalent could not be directly inferred for
trials in which the participant gave the same response to every com-
parison (i.e. the person chose all “sure-thing” or all “gamble” re-
sponses). These trials were excluded and responses were considered
missing except for ones in which a participant indicated a crossover

point on the first screen of a trial. In these cases, because the certainty
equivalent range was narrowed by the first response, it was reasonable
to conclude that a participant who chose all “sure-thing” responses on
the second screen was intending the lowest crossover point and a par-
ticipant who chose all “gamble” responses intended the highest (see
Patalano et al., 2015). As mentioned in the Participants section (Section
2.1), those participants with>30 missing trials were eliminated from
further consideration.

For each condition, one-cycle and two-cycle modified CPT models
(based on Eq. 11) were fit to CE data. An α parameter was estimated as
a measure of curvature of the value function, δ was estimated as a
measure of the elevation of the probability weighting function, and γ
was estimated as a measure of curvature of the probability weighting
function for each model. The modified CPT model was specified as (Eq.
11, rewritten here): CE=(x1α∙(δ(p − Ri-1)γ/(δ(p − Ri-1)γ+(Ri − p)γ)∙
(Ri − Ri-1)/(Rn − R0)+ Ri-1/Rn)+ x2α∙(1− (δ(p − Ri-1)γ/(δ(p − Ri-1)γ

+(Ri − p)γ)∙(Ri − Ri-1)/(Rn − R0)+ Ri-1/Rn)))1/α. For the one-cycle
version of the CPT model, R0= 0 and R1= 100. For the two-cycle
version, R0= 0, R1= 50, and R2= 100. SPSS statistical software,
nonlinear least squares regression, and a sequential quadratic pro-
gramming algorithm for parameter estimation were used. Parameter
starting values considered were 0.5, 0.8 and 1.1 and the starting value
that resulted in the lowest RMSE (with plausible parameter values) was
selected (0.8 was the preferred starting value in nearly all cases).
Parameter estimates were constrained to be>0. Resulting distributions
of estimates were positively skewed (skewness> 1), so medians and
nonparametric statistical tests are reported unless otherwise noted. For
interested readers, we also developed modified one- and two-cycle CPT
models using Tversky and Kahneman's (1992) original one-parameter
probability weighting function (instead of the two-parameter function)
and fit these models to our data. See Supplemental Materials for details.

3.2. Numeracy scales

Numeracy scales were scored as the total number of correct re-
sponses. For the Lipkus et al. (2001) scale, the mean was 9.22
(SD=1.33, range= 6–11, skewness=−0.60), and for the Weller
et al. (2013) scale it was 5.37 (SD=1.44, range=2–8, skew-
ness=−0.30). With the Lipkus et al. scale, individuals in the lower-
range condition (M=8.55) had lower numeracy scores than those in
the full-range (M=9.68) and upper-range (M=9.50) conditions, F
(2,123)= 10.24, p < .001); the findings were the same with the
Weller et al. scale. It is not clear why numeracy scores were lower for
the lower-range condition. The participants were drawn from a dif-
ferent Introductory Psychology class, but one expected to have similar
characteristics.

3.3. CPT model fit and parameter estimates

3.3.1. Plotted CE medians as a function of probability level
To provide a general sense of CE patterns (following Tversky &

Kahneman, 1992), for all gambles of the form (x, p; 0, 1 - p), we divided
the certainty equivalent (CE) by the gamble outcome (x). For each
probability level, the median ratio was plotted by condition as shown in
Fig. 5. The graphed data points can be interpreted as representing the
shape of the probability weighting curve in the limited case in which
the value function is the identity relationship (i.e., α=1). We overlaid
on this graph the smooth curve that reflects the best fitting one-cycle
probability weighting curve for the full-range condition (plotting
gamble probability against decision weight in this case). The figure
shows that CE response patterns were somewhat similar across condi-
tions, although with some deviations in the limited-range conditions. It
is important to keep in mind that because the diagonal line only reflects
the identity line for the probability weighting function when α=1, the
CE patterns in the figure are consistent with multiple interpretations of
the probability weighting function (depending on α). For example, it is
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equally plausible that the best fitting probability weighting curve for
the upper-range condition data is fully below the probability weighting
function identity line and that α=1 or that it is partially above the
identity line and that α < 1. Because our primary interest was in es-
timating decision weights, all future graphs show w(p) plotted against p
using Eq. 9 and median parameter estimates obtained through mod-
eling. CEs are not plotted again on these graphs given that CEs do not
provide direct evidence of the fit of the probability weighting function.

3.3.2. Model fit and parameter estimates for full-range condition
Based on much past work, we predicted that the one-cycle model

would fit the full-range condition data well, and it did. The first row of
Table 1 shows the median parameter estimates and the model fit based
on RMSE from the full-range condition using the one-cycle model. The
median parameter estimates and RMSE here, nearly identical to those
found in past work (Patalano et al., 2015), reflect declining value of
dollars, and an over-under pattern of probability distortion with a
crossover at approximately 20%. In Table 1, we also report the number
of participants with parameter estimates< 1 because typical qualita-
tive patterns for the value curvature α, probability weighting elevation
δ, and probability weighting curvature γ are reflected by estimates
below 1. Note that while the table indicates the percentage of in-
dividuals better fit by each model, data from all full-range condition
participants were used to compute medians for each model (the same is
true for the upper- and lower-range conditions). Also, while we include

median R2 values in the table to give a more intuitive measure of fit,
individual-level R2 values should not be interpreted as proportion of
variance explained given that it is possible for the grand mean model to
fit less well than a nonlinear model to an individual's data (which would
result in a negative R2).

While the one-cycle model generally provided a better fit to data
than the two-cycle model in the full-range condition (based on a com-
parison of RMSE for each model using a Wilcoxon Signed Ranks Z-test,
Z=3.45, p= .001), the two-cycle model did provide a better fit to the
data for 25% of participants in this condition. Further, for the partici-
pants better fit by the two-cycle model, median parameter estimates
(α=0.98, δ=0.48, γ= .63, RMSE=26.42) were similar to medians
for individuals better fit by the one-cycle model (α=0.80, δ=0.55,
γ=0.43; RMSE=26.76; based on a Mann-Whitney U test, Us < 1.60,
ps > .100), as one would expect if the only change between groups was
in the use of an additional reference point (see Fig. 6 for one- and two-
cycle curves fit to subsets of participants; this is the only analysis that
uses subsets of participants). Additionally, mean numeracy scores
(using the Weller et al. 8-item scale but results with the Lipkus et al. 11-
item scale were similar) were higher for participants better fit by the
two-cycle model (M=6.30, SD = 0.95) than by the one-cycle model
(M=5.64, SD = 1.47), though the difference was not statistically sig-
nificant, t(38)=−1.33, p= .191. These findings, while by no means
conclusive, are suggestive that some individuals, who may be more
numerate, may have utilized multiple reference points.

3.3.3. Model fit and parameter estimates for limited-range conditions
The primary question of interest was whether behavior in the upper-

range and lower-range conditions would be better fit by the one-cycle
model (as in Fig. 3a) or the two-cycle model (as in Fig. 3b). To answer
this question, we compared the fit of each model to individual data. The
RMSE was found to be reliably lower for the two-cycle model than for
the one-cycle model for both the upper-range condition (Z=−3.07,
p= .002) and the lower-range condition (Z=−3.00, p= .003), pro-
viding initial evidence that the two-cycle model might provide a better
fit to the data. A comparison of the RMSEs for each participant revealed
that 67% of participants in the upper-range condition and 67% in the
lower-range condition had data better fit by the two-cycle model. That
said, differences in RMSEs were very small between models while dif-
ferences in parameter estimates were large (see Table 1).

We then considered what the probability weighting curves from the
limited-range conditions looked like relative to the standard one-cycle
curve from the full-range condition. The best-fitting curves based on the
one-cycle model, for all three conditions, are shown in Fig. 7; the curves
are very similar to one another. The estimated parameters for the one-
cycle model for the upper- and lower-range conditions did not differ
from those for the full-range condition (Kruskal-Wallis test Hs < 5.50,
ps > .080; including for value curvature), consistent with what would
be expected if the one-cycle model provided the best description of CE
behavior in all three conditions. We then plotted the best fitting curves

Fig. 5. Following Tversky and Kahneman (1992), for all gambles of the form (x,
p; 0, 1- p), the ratio of the certainty equivalent (CE) to the outcome (x) was
calculated. For each probability level, the median ratio was plotted on the
graph (by condition). The graphed data points (by condition) can be interpreted
as representing the shape of the probability weighting function in the case in
which the value function is the identity relationship. The smooth curve is the
estimated one-cycle-model probability weighting curve for the full-range con-
dition.

Table 1
Median parameter estimates and model fit measures for one-cycle versus two-cycle CPT model fit to individual-level data in each condition.

Condition Model Ps best fit by model Value curvature (α) Probability weighting elevation (δ) Probability weighting curvature (γ) RMSE

Full-range
(n=40)

one-cycle 75% 0.80 (76%) 0.61 (81%) 0.57 (89%) 26.76 (.91)
two-cycle 25% 0.64 (76%) 0.46 (94%) 0.63 (88%) 33.29 (.85)

Upper-range
(n=42)

one-cycle 33% 0.90 (72%) 0.69 (84%) 0.46 (91%) 28.15 (.91)
two-cycle 67% 0.62 (91%) 0.29 (89%) 0.79 (72%) 28.06 (.91)

Lower-range
(n=45)

one-cycle 33% 0.74 (91%) 0.82 (69%) 0.51 (87%) 20.54 (.89)
two-cycle 67% 0.85 (78%) 1.16 (42%) 0.58 (82%) 19.98 (.89)

Notes: Data from all participants within a condition were used to produce descriptive statistics (not just one's best fit by each model). In parentheses with each
parameter estimate is the percentage of participants with estimate< 1. In parentheses with RMSE is R2 value. Two-cycle model fit individual data better than one-
cycle model in both upper-range and lower-range conditions (ps < .05). However, the models did not differ substantively in their CE predictions (see Fig. 7).
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for the two-cycle model for the two limited-range conditions and the
one-cycle curve from the full-range condition (see Fig. 8a). Again, the
curves from the limited-range conditions look very similar to the one-
cycle curve for the full-range condition. What the figure broadly sug-
gests is that the two-cycle curves, rather than being scaled re-
presentations of a typical one-cycle curve, might be better described as
portions of the typical one-cycle curve that have been generated from a
two-cycle equation (but with some deviations that might be mean-
ingful, like some additional curve in the upper-range condition). It is
thus not surprising that there were differences in the two-cycle model
parameter estimates in the limited-range conditions relative to the
parameter estimates for the one-cycle model in the full-range condition.
That is, it is not surprising that different parameter estimates are
needed to produce quite similar curves with different equations.

We formally compared parameter estimates from the one-cycle
model in the full-range condition to the two-cycle model in each lim-
ited-range condition. In the lower-range condition, δ was higher than in
the full-range condition (U=3.58, p < .001), while α (U=−0.41,
p= .682) and γ (U=0.99, p= .318) did not differ across conditions. In
the upper-range condition, parameter estimates for α (U=−3.30,
p= .001) and δ (U=−3.04, p= .002) were lower, and γ was higher
(U=2.92, p= .004), than those in the full-range condition. We also
compared the lower- and upper-range conditions' two-cycle model
parameter estimates directly to one another, finding that α (U=2.85,
p= .004) and δ (U=5.52, p < .001) were larger and γ was smaller

(U=−1.95, p= .051) in the lower-range condition, and thus that
behavior was not the same in the two limited-range conditions. Again,
it appears that the two-cycle parameter estimates reproduce something
close to the one-cycle curve using a two-cycle equation. That said, as
indicated earlier, in both limited-range conditions, the data for most
individuals were better fit by the two-cycle model. Thus, there appears,
at least on the surface, to have been some difference in behavior across
contexts that might have resulted in the two-cycle model being the
better fitting model. Alternatively, the two-cycle model might simply fit
better whenever a limited range of probabilities is used during modeling
(as both limited-range conditions, by design, used only half the scale of
probabilities, while the full-range condition used the full scale). We
tested the latter possibility in the next analysis by reanalyzing full-range
condition data.

3.3.4. Reanalysis of full-range condition (top vs. bottom half of
probabilities)

To address whether the use of a limited range of probabilities during
modeling could explain the better fit of the two-cycle models, we re-
analyzed the full-range condition data. We ran a “top-half” analysis
using only the gambles from 50 to 100% in the full-range condition (6
different probabilities) and a “bottom-half” analysis using only the
gambles from 0 to 50% (6 different probabilities; we included the
gambles involving 50% in both analyses) and compared the one-cycle
and two-cycle models for each subset of data (see Table 2). (We use the
terms “top-half” and “bottom-half” instead of “upper-range” and
“lower-range” to differentiate these analyses from those for the upper-

Fig. 6. Best-fitting probability weighting curves for the full-range condition for
individuals better fit by the one-cycle CPT model (n=30) versus the two-cycle
CPT model (n=10). The figure illustrates that the curves can be well-described
as a single inverse S-shaped curve and a two-cycle version of a curve that looks
very similar to the first one. All probability weighting curves are plotted using
Eq. 9, with δ and γ replaced with median estimates.

Fig. 7. Best-fitting probability weighting curves for the one-cycle CPT model for
the lower-range, upper-range, and full-range conditions.

Fig. 8. Both graphs include a standard one-cycle full-range condition curve
(from Fig. 7) for comparison. (a) Best-fitting probability weighting curves for
the two-cycle CPT model for the lower-range and upper-range conditions. (b)
Best-fitting probability weighting curves for the two-cycle CPT model for the
bottom-half and top-half of the full-range condition data. Taken together, the
graphs illustrate that the two-cycle limited-range condition curves and the half-
data full-range condition curves are very similar to one another.
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range and lower-range conditions.) We found that, rather than the one-
cycle model fitting better than the two-cycle model, there was no dif-
ference in the fit of the two models for either the top-half (W=−1.69,
p= .090) or the bottom-half (W=−1.61, p= .107) data. Further,
parameter estimates for the one-cycle and two-cycle models for each
half of the data were similar to the estimates for the corresponding
models applied to upper-range and lower-range condition data (ps >
.100). In Fig. 8b, we plotted best fitting curves for the two-cycle model
for the top-half and bottom-half of the full-range condition data; these
curves are very similar to the upper-range and lower-range condition
curves in Fig. 8a. While the full-range condition analyses here were
based on a much smaller number of gambles than other analyses (half
as many), they do provide some further evidence that the pattern of
behavior seen in the upper- and lower-range conditions might not have
been different from that in the full-range condition, and that the better
fit of the two-cycle model might, at least in part, be related to the range
of probabilities used in modeling.

3.3.5. Further consideration of two-cycle model fit
While there is so far little evidence of a difference in CE behavior as

a function of condition, the two-cycle model did fit the data better
across all conditions than might be expected based on existing litera-
ture. We sought to better understand the fit of the two-cycle model in
all conditions. Further inspection of median CEs in Fig. 5 suggested that
the certainty equivalents generated in all conditions for gambles in-
volving probabilities near 50% might have been larger than the CE
values predicted by the one-cycle CPT model, and thus closer to the
values predicted by a two-cycle model (which, when α=1, are on the
identity line in this figure). The presence of these high CE values at the
midpoint of the 0–100% probability range might at least partially ex-
plain the good fit of the two-cycle model. We formally tested whether
an individual's median CE was greater than the median of the CEs
predicted by the one-cycle model for that individual for all gambles
involving the probability closest to the middle of the full probability
scale (49%, 50% and 51%, for the lower-range, full-range, and upper-
range conditions respectively). We only used gambles of the form (x, p;
0, 1- p) for this analysis. We found that the one-cycle model did un-
derpredict CE values in all three conditions. In the full-range condition,
the actual CE of 47.63 was reliably greater than the model estimated CE
of 37.97 (W=−2.65, p= .008). In the upper-range condition, the
actual CE of 50.50 was reliably greater than the model-estimated CE of
46.06 (W=−2.58, p= .010). And, in the lower-range condition, the
actual CE of 49.88 was greater than the model-estimated CE of 42.39

(W=−4.31, p < .001). The CEs for the three conditions were not
reliably different from one another (H=0.48, p= .785).

It is also noteworthy that the inverse-S shaped pattern that appears
in the CE data in Fig. 5 for gambles between 50 and 100% in the upper-
range condition is very low on the graph relative to what would be
predicted if a typical one-cycle curve were simply scaled to the
50–100% region. In the two-cycle model applied to the upper-range
condition, the low CE values were accommodated with an unusually
low (relative to other conditions and models) α. In contrast, no large
change in α was needed to accommodate CE data in the lower half of
the probability range (0–50%) with a two-cycle model. Thus, if one
were to adopt an account of the findings that assumed a two-cycle
model, one would also have to explain why dollar values are more
steeply discounted for probabilities above 50% than for probabilities
below 50%. That is, such a change in α is possible, but it is not predicted
by the CPT model and thus would require some additional explanation.
Such a change in α would, however, explain why a two-cycle model
better fit the full-range condition data only when the data were split in
half: only in the latter case could a different α be estimated for each half
of the data. In the final Results Section 3.3.5, we consider whether it
might instead be possible to explain the inverse S-shaped curve in the
CEs in the right half of the graph (i.e., for probabilities above 50%) as
mixed use of a one- and two-cycle CPT model, rather than by assuming
a change in value curvature.

3.3.6. Reanalysis using a mixed (one-cycle and two-cycle) model
Our final consideration was whether the data might be well fit by a

mixed model (following Hollands & Dyre, 2000) that uses one-cycle and
two-cycle CPT models in some proportion specified with a weighting
parameter ω, where 0≤ω≤1, resulting in CE=ω(one-cycle CPT
equation)+ (1- ω)(two-cycle CPT equation), with one set of value and
probability weighting parameters used by both equations. We con-
sidered this model because it looked possible that the pattern of CEs for
the upper-range condition data (as shown in Fig. 5) could be produced
by combining a one-cycle and a two-cycle curve (without requiring a
change in α). The parameter estimates and measures of model fit for the
mixed model are shown in Table 3. In the full-range condition, the
median ω was 0.93 (i.e., dominant use of the one-cycle model), while ω
was 0.01 for the upper-range condition and 0.27 for the lower-range
condition (i.e., both indicating dominant use of the two-cycle model);
there was no reliable difference in the medians for the two limited-
range conditions (U=0.81, p= .422). The models fit slightly better
than those of best-fitting one- or two-cycle models (not surprising as the

Table 2
Median parameter estimates and model fit measures for one-cycle versus two-cycle CPT model fit to individual-level data for top (50–100%) versus bottom (0–50%)
halves of probabilities of full-range condition.

Full-range condition subset Model Ps best fit by model Value curvature (α) Probability weighting elevation (δ) Probability weighting curvature (γ) RMSE

50–100% one-cycle 40% 0.91 (58%) 0.57 (88%) 0.58 (88%) 28.18 (.92)
50–100% two-cycle 60% 0.66 (75%) 0.27 (90%) 0.88 (65%) 28.55 (.92)
0–50% one-cycle 35% 0.74 (78%) 0.67 (83%) 0.55 (80%) 19.11 (.90)
0–50% two-cycle 65% 0.71 (85%) 1.21 (30%) 0.61 (85%) 16.70 (.90)

n = 40. Notes: One-cycle model did not fit individual data better than two-cycle model using either top- or bottom-half of data (ps > .080). Parameter estimates here
were similar to one- and two-cycle model estimates for upper-range and lower-range conditions (reported in Table 1).

Table 3
Median parameter estimates and model fit measures for mixed (weighted one-cycle and two-cycle) CPT model fit to individual-level data in each condition.

Condition Model Weight (ω) Value curvature (α) Probability weighting elevation (δ) Probability weighting curvature (γ) RMSE

Full-range mixed 0.93 0.87 (70%) 0.47 (85%) 0.59 (83%) 26.33 (.91)
Upper-range mixed 0.01 0.68 (79%) 0.32 (88%) 0.79 (71%) 27.42 (.91)
Lower-range mixed 0.27 0.84 (84%) 0.84 (56%) 0.54 (82%) 19.98 (.89)

Notes: Weighting parameter ω ranges from 0 (full use of two-cycle model) to 1 (full use of one-cycle model). ω did not differ reliably between upper- and lower-range
conditions (p > .100). The mixed models support dominant use of a one-cycle model in the full-range condition (using all data) and dominant use of a two-cycle
model in the limited-range conditions.
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latter are subsets of the mixed model) but, overall, the analyses did not
change our understanding of the data. Rather, the analyses confirmed
that the one-cycle model best fits CE data in the full-range condition,
while the two-cycle model best fits data in the limited-range conditions.
While it would be possible to develop more complex mixed models
(e.g., with separate value curvature and probability weighting para-
meters for one- and two-cycle equations), developing and testing such
models was beyond the scope of the present work.

3.3.7. Numeracy correlates
We created a deviation score for each parameter estimate in order to

test whether numeracy was associated with less deviation from the
identity line (following Patalano et al., 2015). We created one set of
deviation measures using parameter estimates from the best-fitting
model for each participant and one set using estimates from the one-
cycle model only. For α and γ, which are exponents in the CPT model,
deviation scores αd and γd were created by taking the inverse of para-
meter estimates> 1 (e.g., 2 becomes ½ because the degree of curvature
for any exponent> 1 is the same as that for its inverse), and then
subtracting all scores from 1 (so that larger values indicate greater
deviation from 1). Because δ is a factor that raises or lowers the curve
rather than an exponent, the deviation score was created by simply
taking the absolute value of the difference of the parameter estimate
from 1 (δd= |1 – δ|).3 Table 4 shows Spearman correlations between
deviation scores and the Weller et al. (2013) and Lipkus et al. (2001)
numeracy scores. Using the best-fitting model parameter estimates, we
found that numeracy scale scores were generally negatively correlated
with αd or δd. Using parameter estimates from the one-cycle model only,
just value curvature deviation was negatively correlated with numeracy
scores (see Table 4 for details). Patalano et al. (2015) previously re-
ported reliable numeracy correlations with αd and γd but not with δd,
while Schley and Peters (2014; using a one-parameter probability
weighting function) reported a correlation between numeracy and α
only. The findings suggest that the relationship with αd is the more
robust one, but that differences across studies might also reflect dif-
ferences in modeling procedures.

We also found the correlation between numeracy scores and R2 for
both best-fitting and one-cycle models (we used R2 rather than RMSE so
that values would be comparable across conditions). R2 values were
correlated with both Weller et al. numeracy scale scores (rss= .34,
ps < .001), and Lipkus et al. scores (rss= .23–.24, ps < .010). We
tested whether numeracy predicted the best-fitting model (i.e., one-
cycle or two-cycle) for each individual in the limited-range conditions,
but it did not (|rs|s < .13, ps > .100). Numeracy scores were moder-
ately correlated with response reliability across repeated trials (Pearson
rps= .23–.39, ps < .010); more numerate individuals gave more con-
sistent responses. While not the primary focus of the present work, the
numeracy findings provide some evidence that fluency manipulating
numbers more generally (including translating between different for-
mats for representing part-whole relationships) predicts more veridical
use of numbers in decision making.

4. Discussion

The primary goal of the present work was to extend the proportion
judgment framework and, in particular, Hollands and Dyre's cyclical
power model, to the domain of decision making under risk. We at-
tempted to influence participants' use of a middle reference point
through a manipulation of probability range. We then tested whether
this manipulation would result in a change in the best-fitting CPT model
from one with a one-cycle probability weighting curve to one with a

two-cycle probability weighting curve with similar curvature and ele-
vation parameter estimates. We found that, consistent with our pre-
dictions, for the two limited-range contexts a CPT model with a two-
cycle probability weighting function fit the data reliably better than one
with a one-cycle function. However, counter to our predictions, the
parameter estimates for the two-cycle models for the two limited-range
conditions were different from one another and were different from
one-cycle-model parameter estimates for the full-range condition. In
other words, the estimated probability weighting curves in the upper-
and lower-range conditions were not replications of a full-range curve
scaled to a narrower range. Further, when we modeled the top- and
bottom-half of full-range condition data separately, the two-cycle
model fit as well as the one-cycle model, even though probability range
(and thus potential use of a middle reference point) was not manipu-
lated in this condition. Thus, overall, the evidence was not consistent
with the prediction that the best-fitting model in the limited-range
conditions would be a two-cycle CPT model with parameter estimates
similar to those of the one-cycle models.

There was one element of procedure and one element of participant
characteristics that one might propose could be related to the lack of a
greater difference in CEs across conditions. The first is that, in the full-
range and upper-range conditions, participants were not informed of
the probability context at the outset. However, this was not likely
consequential in that, in the full-range condition, participants would
have presumably assumed a 0–100% range and, in the lower-range
condition, participants were explicitly told of the 0–50% range, yet
differences in behavior in these conditions were not large either. The
second element was that participants in the lower-range condition were
less numerate than participants in the other two conditions. However,
we do not believe this was consequential either in that numeracy was
not reliably correlated with which model (one- vs. two-cycle) was the
better fitting model in any condition. Further, individuals in full-range
and upper-range conditions had similar numeracy scores, yet there was
also little difference in behavior between these two conditions.

The present findings do not rule out the possibility that distortion
arises from proportion judgment or, specifically, that it arises from the
comparison of targets to reference points as predicted by the CPM.
However, they do, at a minimum, suggest that it might not be possible
(or at least might not be easy) to manipulate probability-scale reference
points. Unlike the bounding reference points in a number line task
(which are typically arbitrary, determined by the experimenter, and
visually present on each trial), probability range is more fixed in peo-
ple's minds (and cued by the percentage symbol itself); the endpoints
have important qualitative meaning (i.e., certainty); and the range is in
one's mind rather than embodied in a physical scale. Further, it is
possible that the manipulation was unsuccessful here because even in
the limited-range conditions participants ultimately needed to think
about probabilities from 0 to 100% (i.e., across the full range) in order
to evaluate the subset of gambles that had two non-zero outcomes. That
is, if one gamble offered a 10% chance of $100, otherwise $50, a de-
cision maker might explicitly bring 90% (the probability associated
with the second outcome) to mind in thinking about the gamble. While
not all gambles included non-zero second outcomes, the presence of
even a small number of them might have had an influence on the es-
tablishment of reference points in this context.

Broadly speaking, the shape of the probability weighting function
has been shown to be influenced by context in other research. Most
relevant to the present work, Müller-Trede, Sher, and McKenzie (2018)
recently demonstrated that probability distortion patterns depend on
the scale used to communicate uncertainty. Using a bounded scale for
outcome values and an unbounded scale for different levels of un-
certainty (the opposite of what is standard), they found that distortion
patterns reversed; there was an inverse S-shape for the value function
and, for probabilities, there was evidence of a diminishing sensitivity to
probabilities. Müller-Trede et al.'s (2018) work illustrates that prob-
ability distortion is at least in part determined by whether or not the

3 Patalano et al. (2015) used the absolute value of the difference of the
parameter estimate from 1 for all three parameters; the present approach re-
flects a more precise mapping of curvatures above and below identity.
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likelihood scale is bounded, a finding consistent with a proportion
judgment approach, and suggests that use of intermediate reference
points might be more likely to emerge in the context of novel likelihood
scales.

Stewart et al.'s (2006; Stewart et al., 2015; but see Alempaki et al.,
in press) decision by sampling theory is also relevant to the present
work in that, by this account, the probability weighting function is not
the result of an internal mapping of probabilities to decision weights
but rather is the result of a series of ordinal comparisons to probabilities
sampled from the decision environment, with one's interpretation of a
probability highly influenced by what other probabilities have been
recently experienced. The modified CPT model developed here is si-
milar to decision by sampling in that both approaches give some role to
the decision environment on one's interpretation of a probability.
However, in the decision by sampling approach, the decision weight is
fully constructed through a series of binary, ordinal comparisons be-
tween the present probability and others in the decision environment.
The present approach differs in that even though the context here can
influence choice of reference points, the underlying process is still as-
sumed to be a psychophysical transformation in which the shape of the
curve arises from a part-whole comparison involving imprecisely-
mapped magnitudes (although the present approach, of course, does
not preclude the possibility that there are other contextual influences as
well).

Even though the probability range manipulation did not alter the
probability weighting curve in the expected manner, it was surprising
that the two-cycle model fit better than (or at least as well as) the one-
cycle curve here in a number of situations. We do not necessarily take
this as evidence of the use of multiple reference points or of generally
better fit of two-cycle models. However, we do take it as evidence that
there might have been some aspects of CE behavior that were not fully
consistent with a one-cycle model, and that were better fit by the two-
cycle model in some circumstances. In particular, in the CE data, there
was evidence of overestimation (relative to the one-cycle model pre-
diction) of probabilities at 50%, and there was evidence of an addi-
tional inverse S-shaped curve in the upper-range of the scale. To assess
whether the full-range condition findings extended to other data sets,
we conducted a new analysis in which we fit one-cycle and two-cycle
models to a different set of full-range data from our lab that used more
common probability values (1%, 5%, 10%, 25%, 40%, 50%, 60%, 75%,
90%, 95%, 99%). The pattern of findings was the same, with the one-
cycle model providing better overall fit and the two-cycle model pro-
viding a better fit to each half of these full-range data. What we suspect
is that the two-cycle model fits the data slightly better in contexts in
which the two described properties (i.e., overestimation at around 50%
and inverse S-shaped curvature in the upper range) have greater in-
fluence during modeling, such as when a greater proportion of the data
points are close to 50% (see Alempaki et al., in press, for probability-
range-related issues in modeling).

Even though we ultimately conclude that there is little evidence in
support of the two-cycle model, it does appear that probabilities at 50%
were overweighted by participants relative to the predictions of a one-
cycle CPT model. One possible reason is that individuals have a better
understanding of 50% (and perhaps numbers that round to it, such as
55%) due to familiarity (e.g., coin flips), or that the equal likelihood of
two events might hold a special status in the mind – perhaps a weaker

version of the type of status afforded to complete certainty (i.e., 0% and
100%). Even if 50% is not used as a reference point in the manner
described by proportion judgment models such as the CPM, it might
nonetheless be used as an additional anchor (like 0 and 100%) to which
other probabilities are compared. It is also possible that there are un-
explored demand characteristics of the present elicitation procedure
that contributed to the pattern of data, although, as indicated earlier,
the elicitation method is a frequently used one. We have not en-
countered a similar pattern in past work (e.g., Gonzalez & Wu, 1999;
Tversky & Kahneman, 1992) but it is also not common that median CEs
are reported as a function of probability level. The data pattern seems
worth some further investigation.

An unresolved question is whether there might be a probability
weighting function that fits the data better than either the one-cycle or
the two-cycle model but that does not require different value para-
meters (in the case of the two-cycle model) for the upper and lower
halves of the probability scale. In the present work, we considered the
mixed (one- and two-cycle) model, but this did not offer new insight.
One possibility for consideration for future work would be a model
similar to the present two-cycle model in which the curvature of the
probability weighting function is reference-point dependent, but where
the elevation of the curve is not. To be concrete, imagine plotting a
symmetrical two-cycle inverse S-shaped curve, and then raising or
lowering the entire curve (constrained only by the 0 and 100% end-
points). It is not clear if such a model would fit the data better, but the
approach would arguably be more consistent with the interpretation of
the elevation parameter as being related to the overall attractiveness of
gambling rather than to proportion judgment. With such an approach,
it would be possible to produce a curve that falls largely below (or
above) the identity line yet is still multi-cyclical, and it would be pos-
sible for the decision weight associated with 50% to take a value other
than .50 (in the present two-cycle model, it will always be .50).

The present work offers the first study aimed at testing a modified
cumulative prospect theory model with a cyclical probability weighting
function. Although the data do not provide compelling support for the
modified CPT model, they do illustrate that distortion is not highly
influenced by simple manipulations of probability range. For example,
the underweighting of a probability such as 70% appears to occur
whether the probability appears in the context of probabilities between
0 and 100% or between 50 and 100%. Another avenue for future work
is the consideration of stronger efforts to manipulate reference points
including using decision tasks in which narrower boundaries more
naturally emerge from the given context (e.g., if you knew that mu-
tually-exclusive Outcome A were more likely than Outcome B, it would
be more natural to then assume that Outcome A must have at least a
50% chance); using more extensive training regarding probability
context (e.g., learning the likelihood of a new rare disease over many
sessions); following Müller-Trede et al. (2018), using unfamiliar like-
lihood scales (e.g., a scale from 0 to 10 where 0 means definitely will
not happen, and 10 means equally likely to happen or not happen);
using probability wheels (circular representations with pie-shaped
portions) to represent probabilities visually; and even re-doing the
present task using only $0 as the outcome for the second gamble. It is
important to continue to pursue whether there are unifying cognitive
explanations for similar patterns of probability distortion across tasks.
Although the present study highlights some ways in which decision

Table 4
Spearman correlations between deviation scores and numeracy measures.

Value curvature deviation (αd) Probability weighting elevation deviation (δd) Probability weighting curvature deviation (γd) R2

Weller et al. numeracy −.13/−.19* −.20*/−.08 −.05/−.13 .34***/.34***
Lipkus et al. numeracy −.20*/−.20* −.02/−.01 −.08/−.16 .24**/.23**

N = 126. ⁎⁎⁎p < .001; ⁎⁎p < .01; ⁎p < .05. Notes: First value in cell is correlation between numeracy measure and deviation score for best-fitting model (one-cycle
or two-cycle); second score assumes one-cycle model. Additionally, r= .65 between numeracy scales.
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making under risk might be different from other proportion judgment
tasks, proportion judgment remains a promising candidate as a cogni-
tive account of probability distortion in decision making.
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