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What Do Biased Estimates Tell Us about Cognitive Processing?
Spatial Judgments as Proportion Estimation
Alexandra Zaxa, Katherine Williamsa, Andrea L. Patalanoa, Emily Slussera,b, Sara Cordesc,
and Hilary Bartha

aWesleyan University, USA; bSan Jose State University, USA; cBoston College, USA

ABSTRACT
Similar estimation biases appear in a wide range of quantitative
judgments, across many tasks and domains. Often, these biases
(those that occur, for example, when adults or children indicate
remembered locations of objects in bounded spaces) are believed
to provide evidence of Bayesian or rational cognitive processing, and
are explained in terms of relatively complex Bayesian models (e.g.,
the Category Adjustment Model). Here, we suggest that some of
these phenomena may be accounted for instead within a simpler
alternative theoretical framework that has previously been found to
explain bias in common numerical estimation tasks across develop-
ment. We report data from university undergraduate students and 7-
through 10-year-olds completing a speeded linear position reproduc-
tion task. Bias in both adults’ and children’s responses was effectively
explained in terms of a relatively simple psychophysical model of
proportion estimation. These data clearly show that the proportion
estimation framework is a viable alternative to theories that explain
biases as the result of a Bayesian cognitive adjustment process. We
also discuss our view that these data are not easily reconciled with
the requirements of the more complex Category Adjustment Model
that assumes estimates should exhibit a central tendency bias.

When we make quantitative judgments, they tend to be systematically biased, and the resulting
patterns of bias are strikingly similar across very different kinds of tasks and cognitive domains.
For example, related patterns of bias in quantitative judgments appear for tasks that require
participants to judge the lightness of a gray square, the width of a schematic fish, a location on
a 2D shape or a real-world object, the duration of a sound, the position of a number on a number
line, the proportion of white dots in a mixed array, the frequency of the letter A in a mixed
sequence, the proportions depicted by shapes in graphs, the probabilities involved in different
gambles, andmore (e.g. Barth, Lesser, Taggart, & Slusser, 2015; Barth&Paladino, 2011; Cohen&
Blanc-Goldhammer, 2011; Cohen & Sarnecka, 2014; Duffy, Huttenlocher, & Crawford, 2006;
Erlick, 1964; Hollands & Dyre, 2000; Hollands, Tanaka, & Dyre, 2002; Huttenlocher, Hedges, &
Vevea, 2000; Huttenlocher, Hedges, & Duncan, 1991; Huttenlocher, Newcombe, & Sandberg,
1994; Landy, Guay, &Marghetis, 2017; Nakajima, 1987; Slusser & Barth, 2017; Slusser, Santiago,
& Barth, 2013; Spence, 1990; Sullivan, Juhasz, Slattery, & Barth, 2011; Tversky & Kahneman,
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1992; Varey, Mellers, & Birnbaum, 1990; Gonzalez & Wu, 1999; Zhang & Maloney, 2012). In
general, judgments across these domains typically reveal a systematic overestimation of lower
values and underestimation of higher values, resulting in a pattern of bias toward themean value.

Despite the similarities of the biases that emerge when we make these different kinds of
judgments, many different theories have been proposed to explain their origins. Some of
these are relatively narrow, constructed to explain a small range of localized phenomena.
Others are much broader, aiming to encompass a wide range of behaviors. In some cases,
these theories lead to broad conclusions about the nature of cognition based on the
observed patterns of bias. For example, a current prominent theme in cognitive science
is the idea that perceptual and cognitive systems may operate in a manner that approx-
imates Bayesian reasoning, in that responses may be improved through the combination
of different information sources weighted by their reliability. Biases in quantitative judg-
ments are often interpreted as providing direct evidence of this property of cognitive
processing. The following sections will first discuss why these kinds of biases are often
thought to provide evidence for Bayesian cognitive processes, and will then present
a different perspective and accompanying experiments.

Building on earlywork in the spatial domain (Huttenlocher et al., 1991, 1994), J. Huttenlocher
and her colleagues (Huttenlocher et al., 2000; see also Holden, Curby, Newcombe, & Shipley,
2010; Holden & Newcombe, 2013; Holden, Newcombe, & Shipley, 2013; Holden, Newcombe,
Resnick, & Shipley, 2016; Huttenlocher & Lourenco, 2007; Sandberg, Huttenlocher, &
Newcombe, 1996) developed a broad theory to explain how and why judgments are system-
atically biased for stimuli that vary along a continuum. The theory informed the development of
the Category AdjustmentModel or CAM,whichwas designed to account for judgments of these
stimuli when they are made within a bounded space. An example of a judgment within an
explicitly bounded space might be a location within a clearly defined geometric region, but the
theory also applies tomore implicitly bounded spaces (e.g., a judgment of the lightness of a shade
of gray, with implicit boundaries of black andwhite). To give a brief description of the CAMand
data fromrelated literature,weuse spatial judgments as an example, butwenote that the theory is
much broader, relating to the general role of categories in cognition.

One of the many examples of biases that arise in quantitative judgment appears when
observers are asked to reproduce remembered locations within bounded linear regions by
identifying a previously observed position in a rectangular space, or by attempting to
retrieve a small object recently buried in a long thin rectangular sandbox (Huttenlocher
et al., 1994). This work mapped out clear patterns of systematic bias in participants’ spatial
position estimates, along with characteristic developmental changes. Broadly speaking,
younger children’s estimates (assessed at the group level) are displaced toward the center
of the entire rectangular space. Older children and adults, on the other hand, show
a different pattern in which estimates for locations within each half of the rectangular
space tend to be displaced toward the center of that half. The degree of displacement
varies somewhat in different regions of the space.

The CAM explains the observed patterns of estimation bias in terms of a Bayesian
combination process in which bias results from the hierarchical coding of information
about a stimulus1. That is, for a spatial location, the location is hierarchically coded at two

1A different approach to explaining similar data is the dynamic field theory (e.g. Schutte, Spencer, &
Schoner, 2003; Spencer, Austin, & Schutte, 2012).
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levels: an inexact but unbiased fine-grained location, and a spatial category associated with
the location. The category-level knowledge serves as prior information, combining in
a weighted fashion with the remembered (unbiased, but imprecise) stimulus values. Bias
is introduced because estimates are adjusted away from the remembered value toward the
category prototype (for a spatial category, usually the center of mass of the category),
resulting in a central tendency effect. The Category Adjustment Model predicts that
estimates will generally be adjusted toward the prototypical center of a spatial category,
with the degree and direction of adjustment varying with the number of categories into
which the observer subdivides a space. For example, observers who treat a space as a single
category generally adjust estimates toward the center of the entire space (the prototypical
center of the spatial category). This corresponds to the pattern of bias observed in younger
children’s spatial position judgments in the task described above. Alternatively, for
observers who subdivide the space into two halves, estimates within each half should
generally be adjusted toward the center of that half. This corresponds to the pattern of bias
observed for older children and adults.

The weighting of information sources is determined by their relative reliability, in this
theory, with more variable sources weighted less. For example, when a memory of
a specific stimulus value is less reliable (e.g., because it has been held in memory longer,
leading to memory decay and greater variability), then category-level information should
be weighted more heavily, leading to more adjustment toward the category prototype and
therefore greater estimation bias (a larger central tendency effect). This process is con-
sidered rational (for discussion, see Bowers & Davis, 2012; Griffiths, Chater, Norris, &
Pouget, 2012; Holden & Newcombe, 2013; Jones & Love, 2011) because, although it
introduces bias, it also reduces variability and increases overall accuracy across trials
(Duffy et al., 2006; Huttenlocher et al., 2000). Thus, this literature argues that children
and adults use category information to improve estimation accuracy across many
domains, in a manner that appears to approximate a Bayesian process. From this per-
spective, observations of bias in quantity judgments that turn up across many tasks should
be interpreted as explicit evidence of this characteristic of cognition.

Studies exploring the CAM have covered a wide range of topics, from judgments
involving geometric categories to those involving inductive categories. It has been applied
across many domains and developmental periods. For example, adults’ judgments of
physical locations in the real world (Holden et al., 2013) or locations within
a photograph (Holden et al., 2010) and young children’s reproductions of the sizes of
simple fish-shaped stimuli (Duffy et al., 2006) have all been reported to lead to data
broadly consistent with the Category Adjustment Model (Duffy et al., 2006). Recent work
on category adjustment has further explored potential intriguing links to STEM knowl-
edge, finding that expert geologists remember spatial locations in geologically-relevant
scenes differently from experts in other fields (Holden et al., 2016). Not only does it have
remarkable breadth, but the CAM was also ahead of its time when introduced: it
anticipated a much later surge of interest in closely related Bayesian models of context
dependance in quantitative judgments (e.g. Aagten-Murphy, Cappagli, & Burr, 2014;
Cicchini, Arreghi, Cecchetti, Giusti, & Burr, 2012; Jazayeri & Shadlen, 2010; Sciutti,
Burr, Saracco, Sandini, & Gori, 2015; see also Petzschner, Glasauer, & Stephan, 2015;
Shi et al., 2013). In these models, the context in which a stimulus appears plays a role
similar to that played by the category in the CAM.
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Should we take bias in quantity judgments as evidence of Bayesian cognition? Is the
CAM a good theoretical account of the cognitive processes that yield quantity judgments?
Despite the large literature presenting patterns of bias that are broadly consistent with the
CAM (cf. Duffy & Smith, 2018; Friedman, Montello, & Burte, 2012; Sailor & Antoine,
2005), there is also evidence that it may not be able to accommodate certain reliable
patterns in the observed data. For example, the CAM is fundamentally a description of
a central tendency mechanism, yet some quantitative judgments do not appear to exhibit
the necessary kind of central tendency. In some tasks, patterns of spatial bias are directed
away from category centers or prototypes in a manner that appears inconsistent with the
category adjustment model. These findings may be most visible at the more rarely
examined individual level, but in some cases this pattern is clear in group data as well
(Barth et al., 2015; Crawford, Landy, & Presson, 2014; see also Crawford & Duffy, 2012;
Crawford, Landy, & Salthouse, 2016; Sampaio & Wang, 2017).

In previous work, Barth et al. (2015) proposed that many tasks thought to provide evidence
for the Category AdjustmentModel could be productively conceptualized instead as proportion
judgments (situations in which participants estimate the magnitude of some part within
a bounded range) and that such judgments in themselves might be expected to produce the
observed patterns of curvature (see also Hollands & Dyre, 2000). As in the CAM, the range in
question neednot be explicit and spatially delineated butmight rather bemore conceptually and/
or implicitly bounded (as in the case of judgments of the lightness of a gray object within an
implied range from black to white). One widely observed phenomenon is that estimates of
proportions and frequencies tend to be biased such that smaller proportions are overestimated
and larger ones are underestimated (see Hollands & Dyre, 2000; Zhang & Maloney, 2012, for
reviews). Moreover, quantitative models of proportion estimation have been developed to
describe exactly this kind of relative judgment (e.g., Hollands & Dyre, 2000; Hollands, Tanaka,
& Dyre, 2002; Spence, 1990). These relatively simple models have been shown to account for
a wide range of situations that call for perceptual proportion judgments (Hollands &Dyre, 2000;
Hollands et al., 2002). A converging body of work shows that the systematic patterns of
estimation bias predicted by these models are also observed in tasks that require proportion
judgments of abstract quantities, such as number line estimation (e.g. Barth & Paladino, 2011;
Barth et al., 2016; Cohen & Blanc-Goldhammer, 2011; Cohen & Sarnecka, 2014; Dackermann,
Kroemer, Nuerk, Moeller, & Huber, 2018; Link, Huber, Nuerk, & Moeller, 2014; Peeters,
Degrande, Ebersbach, Verschaffel, & Luwel, 2016; Peeters, Verschaffel, & Luwel, 2017; Rouder
&Geary, 2014; Slusser & Barth, 2017; Slusser et al., 2013; Xing et al., under revision; Zax, Slusser,
& Barth, 2019).

The patterns of bias predicted by models of proportion estimation are qualitatively very
similar to those arising from tasks used to explore the Category Adjustment Model, and the
relevant task structures are also highly compatible with these models. Therefore it may be that
theoretical explanations of proportion estimation are able to describe and explain the data. It is
also possible that these models will accommodate the reported lack of central tendency in some
datasets that violate the predictions of the CAM, perhaps providing a more parsimonious and
potentially unifying explanation of a wide range of phenomena. That is, previous estimation
findings taken as evidence of Bayesian cue combination may be better explained by the simpler
proportion judgment framework.

Previous work (Barth et al., 2015) tested this hypothesis by asking whether a theoretical
framework based on proportion estimation could explain performance in a simple spatial
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position reproduction task administered to adults and older school-age children (adapted from
the work of Huttenlocher & colleagues). On each trial, a horizontal line appeared briefly on
a screen, marked with a small vertical hatch to indicate a target position. After a short delay, an
unmarked line appeared (at varying locations on the computer screen); the participant clicked on
the line to reproduce the target location.Quantitativemodels of proportion estimation (Hollands
&Dyre, 2000) were fitted to participants’ position judgments. Figure 1 gives an overview of these
models (see Hollands & Dyre, 2000, for a lengthier explanation; see also Slusser et al., 2013, for
a fuller description of this theoretical framework and its application to a different family of tasks).
Conceptually, the idea is that if there is bias associated with the absolute estimation of
a magnitude, relative judgments should also incorporate the bias associated with the estimation
of each part2. Estimates of single magnitudes in tasks that do not restrict estimates to fall within
a bounded range (“unbounded” judgments) for many continua are often biased and well
described by power functions. As a result, the estimation of each part magnitude in a relative,
“bounded” judgment individually contributes to bias. The result is a proportional estimate with
a characteristic S-shaped or reverse S-shaped curve arising from the combination of power

Figure 1. An overview of the proportion estimation framework. X-axes refer to true physical values,
y-axes refer to estimates, and β is a parameter representing estimation bias (β = 1 corresponds to no
bias). (a). Predicted estimation patterns if estimates are made within a bounded space relative to the
two endpoints only (a 1-cycle model), shown for three possible values of β. (b). Predicted estimation
patterns when estimates are made within a bounded space relative to the two endpoints plus a middle
reference point (a 2-cycle model), shown for three possible values of β. (c). Predicted estimation
patterns if a combination of strategies were used (e.g. if a middle reference point were used on some
but not all trials, or by some but not all participants). The mixed model is a weighted combination of
the pure 1- and 2-cycle models. Separate β parameters are associated with the 1-cycle and 2-cycle
components of the mixed model, and a weighting parameter (ranging between 0 and 1) determines
the relative contributions of each component such that values nearer to 1 reflect a larger contribution
of the 1-cycle component. (These plots show example values of β ≤ 1; an inverse pattern of over- and
underestimation results if β > 1.).

2This does not necessarily require formal proportional reasoning with exact values, but rather the
intuitive cognitive processing of the ratio relationships of approximate quantities that is available
even to infants (McCrink & Wynn, 2007) and young children prior to formal training (Barth, Baron,
Spelke, & Carey, 2009; Boyer, Levine, & Huttenlocher, 2008; Jeong, Levine, & Huttenlocher, 2007;
McCrink & Spelke, 2010; McCrink, Shafto, & Barth, 2017).
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functions (a “one-cycle”model, described by y = x β/(x β + (1 – x) β); Figure 1a; see Spence 1990;
Hollands & Dyre, 2000, for proof.

Hollands and Dyre (2000) generalized this idea to accommodate additional reference points
(for example, using an imagined midpoint to partition the bounded space into two halves
while making estimates). This strategic use of additional reference points leads to the repeti-
tion of the S-shaped or reverse S-shaped curve between each pair of reference points employed
(two-cycle model; e.g. Figure 1b). Accuracy is better when more reference points are used
(compare Figure 1(a, b)) and/or when there is less bias overall (when β is closer to 1). A mixed
model was also introduced (Figure 1c); this is a weighted combination of the one-cycle and
two-cycle pure models (Hollands & Dyre, 2000, see Eq. 9). This mixed model has three
parameters: a bias (β) parameter for each component and a weighting parameter that
determines the relative contribution of each component. The weighting parameter ranges
between 0 and 1, with values closer to 1 reflecting a greater contribution of the one-cycle
component. This mixed model reflects the likely possibility that multiple strategies might be
used across participants or trials (i.e., some participants might consistently use middle
reference points while others might consistently use none, or individuals might shift strategies
within a session); it can account for asymmetries in estimation patterns that the simpler,
symmetrical one- and two-cycle models cannot.

When thesemodelswere applied to older children’s and adults’ position judgments, twomain
findings emerged (Barth et al., 2015). First, the proportion judgment models – which require
fewer free parameters than the CAM – explained the data well for both adults and children. The
pure one-cycle model successfully captured the general pattern of bias with just one free
parameter, and the three-parameter mixed model described above resulted in an even better
explanation of the group data and of the majority of individual participants. Second, some
individual data violated a key prediction of the CAM: that adjustment leads to a central tendency
effect. Instead, for many individuals, numerous estimates were displaced away from the overall
center of the line. In a few cases, nearly all estimates were displaced away from the center. This
finding of bias away from category centers is not predicted by the Category Adjustment Model,
whether a participant treats the space as a single category or subdivides it into two3. The
proportional models, on the other hand, can take on either S-shapes or inverse S-shapes,

Figure 2. Schematic depiction of a stimulus screen (left) and a response screen (right).

3Previous researchers (Crawford et al., 2014) also noted that some prior findings of bias away from
category centers are inconsistent with the Category Adjustment Model’s posited bias toward proto-
type values but offered a different explanation (see also dynamic field theory, e.g. Spencer et al.
(2012); see also Sailor and Antoine (2005).
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modeling bias toward or away from category centers and accommodating the individual
differences seen in the preliminary data through differing values of the bias parameter and
strategic choice of reference points.

Some available data, therefore, do suggest that a large body of evidence used to argue
for Bayesian combination in cognitive processes of estimation may be (1) explained well
by a simpler model and (2) potentially incompatible with broad principles of the relevant
Bayesian models. The present experiments address three main questions. First, can we
replicate the finding that models of proportion estimation explain adults’ spatial position
estimates? To answer this question, we administered the same simple task to a new larger
sample of adults (Experiment 1). Second, do these models explain children’s spatial
judgments earlier in development? Children aged 9–10 were tested previously (Barth
et al., 2015), but this is a limited age range for tracking potential change over development,
and indeed the age 9–10 group performed much like adults when given the same task
presented at a slightly reduced speed. In the present study, we aimed to determine whether
the proportion estimation framework can explain younger children’s performance on the
same computer-based spatial location reproduction task, and to begin to map out devel-
opmental change with respect to this theoretical framework (Experiment 2). Third, prior
individual-level data were not necessarily compatible with the CAM: a central tendency
effect did not always arise, and the data were sometimes even biased in the opposite
direction. We asked whether this was the case in both Experiments 1 and 2 in order to
evaluate whether children’s and adults’ estimates were compatible with the requirements
of Bayesian central tendency mechanisms.

Experiment 1

Here we attempt to we replicate prior findings showing that models of proportion
estimation can explain adults’ spatial position judgments by administering a spatial
reproduction task to a new sample of adults. We also address the question of whether
estimates exhibit clear central tendency effects.

Method

Participants
Participants were 91 undergraduate students (23 male, 68 female; 18–22 years old) who
received introductory psychology course credit for participation. Five participants (3
female, 2 male) were excluded for noncompletion, leaving 86 total contributing data.

Stimuli
Stimuli were created using MATLAB, and displayed in a different pseudorandom order for
each participant. For each trial, a centered fixation rectangle (gray, 12.3 cm × 0.7 cm) was
immediately followed by a stimulus screen and a response screen (Figure 2). Fixation
rectangles and stimulus screens each lasted 500 ms, and response screens were displayed
for 1500 ms. The stimulus screen displayed a centered 12.3 cm horizontal line enclosed by
short vertical lines at each end, extending 0.3 cm above and below the horizontal line, and
with a vertical hatch mark at a target position along the line. The response screen presented
a non-centered pseudorandomly located line of identical size and orientation, with no target
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hatch mark. For coding purposes, the endpoints of the line were assigned values of 0 and
1000 for the purpose of identifying target locations along the line (these numbers were not
presented or known to the participants). Target values to be estimated were sampled at
intervals of approximately 50 units (a uniform distribution), with the presented values
jittered such that, for example, positions corresponding to “47” and “51” were presented
rather than two instances of “50”. Target positions corresponded to the numbers 47, 51, 98,
102, 147, 153, 199, 202, 249, 252, 298, 302, 349, 351, 398, 403, 449, 453, 499, 502, 547, 552,
597, 601, 647, 652, 699, 703, 747, 753, 798, 802, 848, 853, 899, 901, 949, and 953, for a total of
38 distinct target positions.

Design

Participants completed the spatial estimation task and a number line estimation task (part
of a separate study, not discussed further). Two number-line (N) trial blocks and two
spatial estimation (S) trial blocks were completed in NSSN or SNNS order. There were 38
trials per block, with each target value represented once per block (twice total).

Procedure

Participants were seated in front of a computer, close enough to use a mouse, with blank
paper covering the keyboard and top of the screen intended to obscure landmarks.
Participants used an HP ProBook 14” laptop with an external mouse. They were given
written and spoken instructions for the first block. Two practice trials preceded the first
block. Practice trials were identical to experimental trials, using target values drawn
randomly from the list of experimental targets. Different practice trial values were
presented to each participant and no feedback was given. For each trial, the task was to
move the cursor and click the appropriate position (to match the previously presented
target spatial location) on the blank horizontal line during the response screen.
Mouseclicks were recorded as numbers from 0–1000, corresponding to locations along
the response line. A 1000 ms pause separated trials.

Results and discussion

We compared participants’ responses to the true locations of target positions.
A participant’s estimate for a target location was removed as an outlier if it differed
from the group mean for that target location by > 2 SDs (4.79% of trials). We
calculated percent absolute error (PAE) by dividing the absolute difference between the
number corresponding to the participant’s estimated position and the number corre-
sponding to the presented position by the numerical range, then multiplying the quotient
by 100 to yield a percentage. Adults were highly accurate on this task, with average PAE
across individuals = 2.92%, similar to previous findings (Barth et al., 2015).

Adult participants’ placements did exhibit systematic bias, despite their high accuracy.
Figure 3 depicts group median estimates (left) and bias in group medians (right). Models of
proportion estimation (see Figure 1) were fitted to the group medians and to individual data.
We fitted one- and two-cycle versions of the model (Figure 1(a, b)) and also the mixed model
(Figure 1c). The mixed model provided the best explanation of the adult group median data
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(see Figure 3), yielding lower AICc scores (Δ AICc = 50.06)4. This suggests that multiple
strategies were used to perform the task, with variation either across individuals (perhaps with
some individuals settling on a pure two-endpoint strategy and others on a pure endpoints-
plus-midpoint strategy) or across trials (with each individual using multiple strategies). At the
individual level, the mixed model was preferred for 67/86 participants (78%, similar to 79%
reported in Barth et al., 2015). The pure one-cycle model was preferred for 5/86 (6%) of
individual adults and the pure two-cycle for 14/86 (16%). (See Appendix A for individual fits).

These results show that the proportion estimation framework can indeed provide
a good explanation of adults’ spatial judgments in this task, consistent with prior findings
(Barth et al., 2015). They further suggest that individual adults may have used
a combination of reference point strategies, shifting from trial to trial. The fact that this
mixed model, a combination of the pure one- and two-cycle models, fit the data so well
suggests that participants did overwhelmingly rely on some combination of endpoints and
midpoint in making their judgments. If participants had also incorporated quartile
reference points, for example, this particular mixed model would not have been expected
to accommodate the data as well.

In addition to determining whether proportion estimation models could explain adults’
estimates, we aimed to test the possibility that behavior in this task, especially when
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Figure 3. Findings from Experiment 1. Adults’ median placements in the position reproduction task
(right) and bias in adults’ median placements (right), computed by subtracting actual locations from the
corresponding placements. In the bias plot, placements too far to the left fall below y = 0, and
placements too far to the right appear above y = 0. The best fit of the three-parameter mixed
proportion estimation model is shown with both plots. Separate β parameters are associated with
the one-cycle and two-cycle components of the mixed model, and a weighting parameter (ranging
between 0 and 1) determines the relative contributions of each component such that values nearer to 1
reflect a larger contribution of the 1-cycle component.

4AICc (Akaike Information Criterion, adjusted for small sample sizes), provides a measure of how well
different models can explain data while taking varying numbers of parameters into account;
(Burnham & Anderson, 2002; Burnham, Anderson, & Huyvaert, 2011). Δ AICc refers to the difference
in AICc values between a nonpreferred model and the preferred model, which always has the lowest
score. Burnham and Anderson (2002) proposed the following interpretation guidelines: “As a rough
rule of thumb, models having a Δ within 1–2 of the [preferred] model have substantial support and
should receive considerations in making inferences. Models having Δ within about 4–7 of the
[preferred] model have considerably less support, while models with Δ > 10 have either essentially
no support and might be omitted from further consideration or at least fail to explain some
substantial structural variation in the data.” (p. 446).
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examined at the level of individual trials, might violate the predictions of the Category
Adjustment Model. Specifically, we asked whether estimates might exhibit bias away from
the direction that would be expected if a central tendency mechanism were at work. To
ask whether estimates were not consistent with central tendency bias, we first defined what
should count as such a violation. We started with the assumption, consistent with both the
CAM and our theoretical framework, that most participants would either treat the space
as a single unpartitioned region, or partition the space into two halves – or else they would
use a mixture of these two strategies. In the first case, treating the space as a single
unpartitioned region, CAM predicts that estimates should generally be shifted toward the
center of that single region. It does not necessarily predict that 100% of estimates should
be shifted in this manner: CAM does allow for some bias in the opposite direction near
the boundaries of a range (see Huttenlocher et al., 2000, for details). But the majority of
estimates should certainly show a shift toward the overall center. In the second case, that
of subdivision into two spatial categories, the CAM predicts that estimates would be
biased toward the center of each half of the space, with values closest to the endpoints of
the overall space biased toward the overall center and values closer to the middle biased
away from the overall center. As a result, about half the total estimates would (coinciden-
tally) end up showing displacement toward the overall center of the entire space, and
about half would (coincidentally) show displacement away from the overall center of the
entire space.

Given the above predictions, we reasoned that in order to be broadly consistent with
the CAM’s predictions, about 50%-100% of participants’ estimates should be displaced
toward the overall center of the space. We also reasoned that the opposite pattern of about
50%-100% of estimates displaced away from the overall center should be considered
incompatible with the CAM’s predictions. We loosened this requirement further to
accommodate the aforementioned allowable bias away from the center at the boundaries
of the range, assuming that the percentage of estimates displaced away from the overall
center might rise above 50% while still being considered permissible by the CAM. We
therefore chose 60% (of individual estimates displaced away from the overall center) as
a criterion to explore. (A schematic view of what one possble version of these patterns
might look like is presented in Figure 4. We note that this is not the only possible way to
characterize a lack of central tendency bias in placement patterns.)

As would be expected based on the adult group median data shown in Figure 3, the
majority of estimates at the group median level were displaced away from the overall
center. A large percentage of adults’ individual estimates were also biased away from the
overall center: when we analyzed the data to determine how many participants met
a criterion of 60% of individual estimates displaced away from the overall center, we
found that the majority of adult participants did so (over 60%; see Figure 5). Over 40% of
adults met a stricter criterion of 65% of individual estimates displaced away from the
overall center, and close to 20% of adults even met a criterion of 75% displaced away from
the overall center. In our view, this finding is difficult to reconcile with a cognitive process
that is theoretically focused on central tendency bias.

Overall, these results show that the proportion estimation framework can provide
a good explanation of adults’ judgments in this spatial position reproduction task. These
results also suggest that adults’ judgments are not necessarily compatible with the idea that
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they are biased as a result of adjustment toward the center of spatial categories.
Experiment 2 addresses the same questions in children.

Experiment 2

Experiment 2 was designed to determine whether the proportion estimation models
applied in Experiment 1 to adults’ spatial judgments can also explain younger children’s
performance on the same task, and to begin to map out developmental change with
respect to this theoretical framework. We also aimed to test potential violations of the
predictions of a central tendency mechanism in children’s spatial judgments, using the
same methods applied to adults’ judgments in Experiment 1.

A broad developmental prediction consistent with both the CAM and the proportion
judgment model is that children will not partition the space earlier in development, and
later will begin to partition the space, treating it as two categories. The age at which this
change typically occurs depends on the particular task. For example, Huttenlocher et al.
(1994) reported evidence of subdivision in 10-year-olds but not 6-year-olds in their
“sandbox” task, although a similar task using a rectangle drawn on paper yielded evidence
of subdivision even in 4-year-olds. Therefore, it would be reasonable to predict a change
from one-cycle to two-cycle patterns at some point in development, but not necessarily
within the age range tested here. Another reasonable prediction is that children’s judg-
ments will be more similar to adults’ as they get older. The simplest interpretation of the
mixed model, as initially introduced by Hollands and Dyre (2000), would not lead to
a prediction that it should be the most sophisticated of the three models considered here
(expected to appear in the oldest participants). Yet adults clearly made judgments best
described by the mixed model, both at the group median level and for approximately 75%
of individuals; the same is true for children aged 9–10 (Barth et al., 2015). We return to
this issue in the General Discussion. In Experiment 2, we ask whether younger children
differ from adults and older children, and if so how.
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Figure 4. Schematic, approximate depiction of rough patterns of bias that would be compatible with
the CAM’s predictions (central tendency bias, on left) vs. patterns that would be incompatible with the
CAM (bias away from central tendency, right). Top row depicts possible estimation patterns if observers
treat the space as a single, unpartitioned region; bottom row depicts possible estimation patterns if
observers mentally partition the space into halves.
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Method

Participants
Participants were 82 children aged 7 through 10 years, recruited from a database of local
families. Testing took place in a quiet laboratory room. Three 7-year-olds were excluded
from further analysis because their placements were uncorrelated with target locations.
Participants contributing data included 19 7-year-olds (age range 7;0 7;11, mean age 7;5, 9
females, 10 males), 19 8-year-olds (age range 8;0 8;11, mean age 8;3, 10 females, 9 males),
20 9-year-olds (age range 9;0 9;11, mean age 9;4, 11 females, 9 males), and 20 10-year-olds
(age range 10;0 10;10, mean age 10;5, 10 females, 10 males). Data from these 9 and 10-year
-olds were previously reported as a single combined group in prior work (Barth et al.,
2015) and are re-analyzed here separately by age, along with new data from younger
children.
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Figure 5. Results of tests for violations of central tendency. The top panel shows the percentage of
group median estimates biased away from the overall center of the space for adults (Experiment 1) and
children (Experiment 2). For every age group, over 50% of estimates were biased away from the overall
center at the group median level. The bottom panel shows findings from individual estimates, giving
the percentages of participants in each age group who met different thresholds for percentage of trials
exhibiting bias away from the overall center. For each age group, the percentage of individuals is
shown for whom 60%, 65%, and 75% of estimates were biased away from the overall center.
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Stimuli
Stimuli were the same as those used for adults in Experiment 1, except that for children,
fixation rectangles and stimulus screens each lasted 750 ms and response screens were
displayed for 2250 ms.

Design

Experiment 2 used the same design as Experiment 1 except that children completed 19
trials per block (such that each child completed a total of one trial per unique target
value), with blocks in NNSS or SSNN order to reduce the number of potentially confusing
task switches.

Procedure

The procedure was the same as that for adults except for the following alterations. Some
participants used an HPProBook 14” laptop with an external mouse to complete the study,
and some used an HP Compaq desktop with a Dell 15” monitor. Along with their
instructions, children also saw a picture of a blank response line on paper to demonstrate
what the response screen would look like (no response was made and no feedback was
given). Four practice trials preceded the first block, and a 1500 ms pause separated trials.
The experimenter also had the option to pause the game in case of distraction.

Discussion

We compared children’s responses to the true locations of target positions. As for the
adults in Experiment 1, an estimate for a target location was removed as an outlier if it
differed from the group mean for that target location by > 2 SDs (5.13% of trials for
7-year-olds, 5.24% for 8-year-olds, 5.10% for 9-year-olds, and 4.29% for 10-year-olds).
General accuracy for each age group was again reported in the form of PAE, with an
average PAE of 5.17% for 7-year-olds, 4.58% for 8-year-olds, 3.53% for 9-year-olds, and
3.58% for 10-year-olds.

Children’s placements were quite accurate, but like adults’ they exhibited systematic
bias. Figure 6 depicts group median estimates for each age group (left) and bias in group
medians for each age group (right). Models of proportion estimation were fitted to the
group median and individual data for all four age groups. We again fitted one- and two-
cycle versions of the model (Figure 1(a, b)) and also the mixed model (Figure 1c). The
mixed model provided a strongly preferred explanation of the group median data for 9-
and 10-year-olds (see Figure 6).

The mixed model was moderately preferred for 7-year-olds at the group median level,
and the 8-year-olds’ placements provided the same level of support for the mixed model and
pure 2-cycle model (ΔAICc for mixed model vs. preferred pure model: 7-year-olds = 5.55,
8-year-olds = 0.13, 9-year-olds = 34.4, 10-year-olds = 68.4). (See Appendix B for individual
fit information.) Figure 7 depicts the number of children in each age group with each
preferred model. By age 10, 80% of individual children produced placements that were
explained best by the mixed model, compared to 78% of adults in Experiment 1. We return
to the question of what these developmental patterns might mean in the General Discussion.
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Figure 6. Findings from Experiment 2. Children’s median placements (left) and bias in their median
placements (right), computed by subtracting actual locations from the corresponding placements. In
the bias plot, placements too far to the left fall below y = 0, and placements too far to the right appear
above y = 0. The best fit of the three-parameter mixed proportion estimation model is shown with both
plots. Separate β parameters are associated with the one-cycle and two-cycle components of the mixed
model, and a weighting parameter (ranging between 0 and 1) determines the relative contributions of
each component such that values nearer to 1 reflect a larger contribution of the one-cycle component.
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These results show that the proportion estimation framework provides a good explana-
tion of children’s spatial judgments in this task, as it does for adults. They further suggest
that older children may have used a combination of different reference point strategies,
shifting from trial to trial, as adults appear to do, but that younger children may have been
less likely to do so. We tested the possibility that children’s estimates, like adults’, might
violate the predictions of the Category Adjustment model, exhibiting considerable bias
away from the center. The majority of estimates at the group median level for every age
group were displaced away from the overall center. We analyzed individual data to
determine how many participants met various criteria for the percentage of individual
estimates displaced away from the overall center. A considerable number of children met
a threshold of producing 60% or more of individual estimates that were biased away from
the overall center, with a developmental trend toward producing more such estimates with
age (see Figure 5 for breakdown by age). Again, we suggest that this result is difficult to
reconcile with theories that describe a central tendency mechanism.

General discussion

Quantitative judgments exhibit systematic and remarkably similar biases across a wide
range of tasks and domains. Despite this similarity, many different theories have been
proposed to account for them. Often, biases in estimates are interpreted as providing
evidence for broad theories about the nature of cognitive processing, such as the idea that
perceptual and cognitive systems may carry out (or approximate) Bayesian processes in
that they may improve or optimize responses by combining different information sources
weighted by relative reliability. The Category Adjustment Model (CAM; e.g. Huttenlocher
et al., 2000) is a prominent example of such a theoretical approach.

Some prior findings suggest that the large body of evidence used to argue for Bayesian
combination in cognitive processes of estimation might instead be explained by
a considerably simpler theoretical framework based on quantitative models of proportion
estimation (e.g., Barth et al., 2015). Moreover, some existing data appear incompatible
with key components of the posited Bayesian cognitive processes: namely, central ten-
dency bias. The present work addressed three main aims in two experiments, focusing on
the domain of simple spatial judgments as an example. First, we aimed in Experiment 1 to
replicate the finding that models of proportion estimation can successfully explain adults’
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spatial position estimates, in a new sample of adults. Second, because previous work
suggesting that these models can explain children’s spatial judgments had only looked at
9- to 10-year-olds (who performed similarly to adults), we aimed in Experiment 2 to
extend this investigation to a younger developmental range, and to identify potential
patterns of developmental change. Third, in both experiments we aimed to test whether
participants’ estimates were compatible with the requirements of Bayesian central ten-
dency mechanisms.

We applied the theoretical framework based on proportion estimation (Hollands &
Dyre, 2000; Slusser et al., 2013), analyzing both group- and individual-level data with
respect to the quantitative models described above (Figure 1). Specifically, we fitted the
one-cycle and two-cycle proportion judgment models and the mixed model (a weighted
combination of the two “pure” models) to group median and individual data. We found
that these models could quantitatively explain the data very well for both children and
adults. These findings show that, at minimum, this theoretical framework should be
considered a viable alternative to theories that explain biases as the result of a Bayesian
cognitive adjustment process, such as the Category Adjustment Model. The key take-
home point is that the biases that arise in this family of tasks should not necessarily be
interpreted as constituting evidence of Bayesian cue combination.

In addition to addressing whether the relatively simpler proportional reasoning frame-
work would provide a good quantitative explanation of the data (in addition to its readily
apparent qualitative fit), we sought to determine whether the data provided evidence
against models such as the CAM. We did so by testing the degree to which individual
estimates violated the predictions of the CAM in the sense that it is fundamentally
a description of a mechanism that creates central tendency effects. Consistent with
previous findings (Barth et al., 2015), participants’ estimates were difficult to reconcile
with the idea of a central tendency mechanism: numerous estimates were biased away
from the predicted directions (see also Crawford et al., 2016). This was true at the
individual level – in some cases, nearly all estimates were displaced in the “wrong”
direction – and was also visible at the group median level.

Although we believe the direction of bias observed in our participants’ estimates is not
compatible with what would be expected if a CAM-style mechanism were at work, it
would certainly be possible to accommodate data like these that show outward bias (rather
than central tendency bias) with a theory preserving the spirit, if not the letter, of the
CAM. For example, the category prototypes toward which estimates are adjusted in the
CAM are usually understood to be the centers of mass of geometric regions, but this is not
absolutely required. One could develop an explanation in which category prototypes are
located at the outer edges of the space, or beyond the space, to accommodate outward bias
(see also Crawford et al., 2014, 2016). Such an explanation would become more compel-
ling to the degree that it led to specific, testable a priori predictions about the cases in
which category adjustment processes should lead to outward bias rather than the inward
central tendency bias that has been the focus of nearly all CAM-related literature to date.
The appeal of this type of approach to researchers will likely vary depending on theoretical
preference.

From our perspective, given the focus on explaining patterns of central tendency bias in
CAM and related literatures (e.g. Cicchini et al., 2012; Sciutti et al., 2015), the existence of
replicable data that do not conform to a central tendency pattern substantially decreases
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the appeal of this family of theories. Moreover, a strong focus on one family of explana-
tions or one key targeted characteristic (such as Bayesian mechanisms and/or optimality)
may lead researchers to underreport or underemphasize findings that don’t fit (Barth,
Cordes, & Patalano, 2018; Rahnev & Denison, 2018). There is a clear case to be made,
therefore, for attending to and following up on what “doesn’t fit” and for exploring
explanations based in multiple theoretical frameworks.

The proportion estimation framework provides an attractive quantitative explanation
of the data from this family of spatial tasks, coupled with a sensible conceptual match
between the type of task it is designed to model (situating a magnitude within a bounded
range) and the structure of the tasks that comprise the CAM literature. That is, the
proportion judgment explanation yields good quantitative fits while making good sense.
The CAM has the appeal of good sense also, but in our view the data do not conform to
the CAM’s requirements as they are usually presented in the published literature (where
the CAM is generally understood to function as a central tendency mechanism). The
proportional framework also has the appeal of relative simplicity when compared to the
CAM, requiring fewer free parameters.

Like the CAM, the proportion estimation framework also has the advantage of general-
ity. It has emerged as a powerful explanation of the bias that characterizes performance
and developmental change in similarly structured abstract magnitude judgments such as
bounded number line estimation (e.g., Barth & Paladino, 2011; Barth et al., 2016; Cohen &
Blanc-Goldhammer, 2011; Cohen & Sarnecka, 2014; Dackermann et al., 2018; Link et al.,
2014; Peeters et al., 2016, 2017; Rouder & Geary, 2014; Slusser & Barth, 2017; Slusser et al.,
2013; Xing et al., under revision; Zax et al., 2019). This approach has led to novel
predictions about the specific patterns of bias that should arise for number line judgments
made under different task conditions and by different age groups over development, with
these predictions supported by data (Zax et al., 2019). The appeal of this theoretical
framework is increased by its demonstrated ability to account for a range of different
quantity judgments.

Despite the proportion estimation framework’s advantages, such as good quantitative
fits to data, good conceptual fits with task structure, relative simplicity, and generality,
there are many remaining questions to be answered. One question that specifically makes
contact with the model fits in the present study concerns how we should interpret the
mixed model. For both the present spatial reproduction task in children and adults (see
also Barth et al., 2015) and the bounded number line estimation task in children (Zax
et al., 2019), a mixed proportion estimation model (Figure 1c) provided a good quanti-
tative explanation of performance. This mixed model, as described earlier, is a weighted
combination of the pure models (a one-cycle model, Figure 1a, and a two-cycle model,
Figure 1b). The mixed model can accommodate differences in strategy use across or
within individuals, unlike the pure models that reflect single strategies: making estimates
relative to two endpoint reference points (treating the space in question as a single region)
or making estimates relative to two endpoints plus a midpoint (treating each half of the
space as a region).

However, though the mixed model accounts well for the data in both tasks, the way in
which it does so differs across tasks. The original theoretical motivation for the mixed
model (Hollands & Dyre, 2000) is the idea that we might well expect a mix of strategies to
shape performance: some individuals might use one strategy consistently (for example,
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always mentally partitioning the space into two halves when making estimates) while
others might use another (for example, never mentally partitioning the space). It is also
possible that strategies might vary across trials within individuals. If the mixed model is
simply the reflection of a combination of different partitioning strategies, then it makes
sense that a two-parameter version of the mixed model should account for the data:
a weighting parameter would reflect the relative contributions of each component, and
a single beta parameter would describe the bias associated with both components5. This is
exactly what is observed when children carry out number line estimation tasks, indicating
the proper location of a given numeral on a line with two marked endpoints (Zax et al.,
2019). A two-parameter mixed model accounted for number line data, and parameter
values changed exactly as predicted by previous theoretical applications of the proportion
judgment framework to number line tasks (e.g., Slusser et al., 2013). More specifically, task
properties that would be predicted to support young children’s partitioning of the number
line (such as cues to the location of the midpoint) were associated with a larger contribu-
tion of the two-cycle component. A larger two-cycle contribution was also associated with
increased age (Zax et al., 2019). For both components, resulting beta values were less than
1. Finally, the mixed model described group median but not individual level data: at the
individual level, children were most commonly characterized by either the one-cycle or
the two-cycle model, consistent with the idea that most children settled either on an
endpoints-only strategy or an endpoints-plus-midpoint strategy, with a minority of
children switching strategies across trials. Overall, in the context of children’s bounded
number line estimation, the functioning of the mixed model aligns extremely well with its
original motivation as introduced by Hollands and Dyre (2000).

The situation is not so clear for the spatial tasks described in the present paper. Here, as
in prior work with related tasks (Hollands & Dyre, 2000), a three-parameter mixed model
best accommodates the data. The one-cycle and two-cycle components of the mixed
model each require a different value of the beta parameter. To accommodate the place-
ments of adults in Experiment 1, for example, the mixed model involves a very small
contribution from a two-cycle component with a beta just below 1, and a very large
contribution from a one-cycle component with an unusually large (far above 1) beta value.
This is not readily consistent with the simplest interpretation of the mixed model, in our
view. Hollands and Dyre (2000) reported similar patterns when re-analyzing data from
previous researchers. Their admittedly ad-hoc explanation of this finding was that parti-
cipants in these tasks might have been judging different perceptual dimensions at different
times. For example, participants judging the proportion of dots of one of two colors might
have been judging color saturation (consistent with a beta value above 1) or area (con-
sistent with a beta value below 1). We think this idea does not extend easily to the present
data, and we therefore don’t favor it as an explanation of the role of the three-parameter
mixed model for the current spatial task. Overall, although the mixed model fits the data

5Such a pattern would not necessarily be predicted in every case. For example, if a sample included
a wide age range, a three-parameter mixed model might be appropriate. This is because younger
children typically exhibit a larger degree of bias in their number line placements and they are also less
likely to use additional inferred reference points. As a result, when a mixed model is fitted to group
data, bias parameters might be more extreme for the one-cycle component (corresponding to data
generated by the younger children in the sample). This pattern would still be consistent with
a straightforward interpretation of the mixed model.
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extremely well, the resulting parameter values from the present spatial task are not clearly
aligned with the simplest interpretation of the cognitive strategies underlying the mixed
model – unlike the number line estimation task. Similarly, the developmental course of
performance on the present spatial task is less straightforward than it is in the number line
task. For the number line task, children exhibited the predicted developmental progression
from less to more frequent use of a middle reference point (Zax et al., 2019), with
relatively few individuals best described by the mixed model. But in the present spatial
task, adults and older children’s placements are best described by mixed models, though
a developmental progression toward the mixed model is not predicted with respect to the
simplest interpretation of the model. This suggests that different kinds of cognitive
strategies might underlie performance on the present spatial position reproduction task
and the spatial component of the number line estimation task. We do not offer evidence
for a different interpretation of the mixed model here; ongoing work will build on these
differing observations across task types to deepen our understanding of the cognitive and
developmental processes and strategies involved in quantity judgments like these.

The present work does not make explicit connections to neural data or computational
simulations, but an interesting direction for future work will be to investigate ways in
which the performance patterns seen in these tasks might be consistent with character-
istics of neural coding of quantity (e.g., Prather, 2012, 2018). A relevant example linking
behavioral results to neural coding characteristics comes from previous work on opera-
tional momentum effects. Operational momentum (McCrink, Dehaene, & Dehaene-
Lambertz, 2007) refers to a phenomenon in which participants overestimate the outcomes
of addition operations while underestimating the outcomes of subtraction operations.
Prather (2012) showed through simulation that behavioral observations of operational
momentum could (and indeed should) arise from the nature of the neural coding of
number.

Another important question for future experimental work concerns the extent to which
the proportion judgment framework might explain performance in other tasks that have
been used to develop and explore the CAM in previous work. In addition, as briefly
described above, the same general form is shared by a wide variety of quantitative
estimation biases appearing across many domains. Studies reporting these findings span
multiple literatures in cognitive and developmental psychology, theoretical and perceptual
neuroscience, and judgment and decision-making. The paradigms that produce these
biases are in many cases conceptually compatible with the proportion estimation frame-
work (for an example from judgment and decision making, see Xing et al., 2019). Because
many of these phenomena can reasonably be thought of as implicit or explicit estimates of
proportion, it may be that this theoretical framework could provide a useful unifying
explanation of biases in a wide range of quantity judgments. Ongoing work will explore
the possibility that theoretical explanations of proportion judgment could provide
a unifying account of the psychology of quantity judgments across domains.
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Appendix A: Individual analyses of Experiment 1

Adults

S# Preferred Model R2 β (if pure model) β1 (if mixed model) β2 (if mixed model) Weight parameter

1 Pure 2-cycle Model 0.9914 0.9422
2 Mixed Model 0.9949 1.131 0.759 0.3868

3 Mixed Model 0.9961 2.072 0.8231 0.1023
4 Mixed Model 0.9952 5.572 0.8356 0.1002

5 Mixed Model 0.9943 1.155 0.4818 0.7417
6 Mixed Model 0.9961 3.896 0.9818 0.05972

7 Mixed Model 0.9837 5.583 0.7959 0.08031
8 Mixed Model 0.9933 1.301 0.5366 0.6128
9 Mixed Model 0.9906 2.106 0.8737 0.127

10 Mixed Model 0.9894 ~6 0.9184 0.1453
11 Mixed Model 0.9935 1.365 0.8548 0.2499

12 Mixed Model 0.9853 ~6 0.9436 0.07004
13 Mixed Model 0.9917 1.066 0.2745 0.7986

14 Pure 2-cycle Model 0.9966 0.9057
15 Mixed Model 0.9975 5.603 0.8294 0.03853
16 Mixed Model 0.9966 5.161 0.8044 0.1092

17 Pure 2-cycle Model 0.994 0.8699
18 Mixed Model 0.9945 5.063 0.9551 0.1033

19 Pure 1-cycle Model 0.9943 1.054
20 Mixed Model 0.9937 2.759 0.9324 0.09964

21 Mixed Model 0.9954 ~6 0.8741 0.1459
22 Mixed Model 0.9937 2.297 0.8799 0.1883

23 Pure 2-cycle Model 0.9864 0.8037
24 Mixed Model 0.9905 4.769 0.8706 0.05565
25 Mixed Model 0.9924 5.586 0.928 0.114

26 Pure 2-cycle Model 0.9919 0.8893
27 Mixed Model 0.9913 1.1 0.03262 0.8644

28 Mixed Model 0.9948 1.494 0.7096 0.497
29 Mixed Model 0.9953 1.281 0.7125 0.3773

30 Mixed Model 0.9889 1.083 0.1599 0.8714
31 Mixed Model 0.9931 ~ 6 0.7755 0.07272
32 Pure 2-cycle Model 0.9951 0.9712

33 Pure 1-cycle Model 0.9933 1.045
34 Mixed Model 0.9948 3.175 0.8769 0.06355

35 Mixed Model 0.9943 ~ 6 0.8838 0.08467
36 Mixed Model 0.9955 5.208 0.9449 0.17

37 Pure 1-cycle Model 0.9945 1.117
38 Pure 2-cycle Model 0.9945 0.9102
39 Mixed Model 0.9946 5.833 0.9002 0.1025

40 Mixed Model 0.9937 1.087 0.5729 0.6791
41 Mixed Model 0.9946 5.752 0.8681 0.08139

42 Mixed Model 0.9941 2.18 0.8362 0.1021
46 Mixed Model 0.9921 1.108 0.2429 0.7656

47 Mixed Model 0.9931 ~ 6 0.8979 0.07553
50 Pure 2-cycle Model 0.985 0.9029

(Continued )
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(Continued).

Adults

S# Preferred Model R2 β (if pure model) β1 (if mixed model) β2 (if mixed model) Weight parameter

51 Pure 2-cycle Model 0.9891 0.9615

52 Mixed Model 0.9931 ~6 0.8979 0.07553
53 Mixed Model 0.9924 2.902 0.8815 0.08339

54 Mixed Model 0.99 ~ 6 0.8908 0.08241
55 Mixed Model 0.9964 1.164 0.006141 0.8947

56 Mixed Model 0.9916 3.432 0.9091 0.1497
57 Mixed Model 0.9935 ~ 6 0.8157 0.1677
58 Mixed Model 0.9923 ~ 6 0.9133 0.09143

59 Pure 1-cycle Model 0.9896 1.107
60 Mixed Model 0.9945 1.449 0.7894 0.3288

61 Mixed Model 0.9925 5.978 0.9056 0.1134
62 Mixed Model 0.9944 2.218 0.8374 0.09908

63 Mixed Model 0.9853 1.144 0.273 0.7447
64 Mixed Model 0.9907 1.098 0.6536 0.6647

65 Pure 2-cycle Model 0.9933 0.8159
66 Mixed Model 0.99 1.101 0.139 0.8975
67 Pure 2-cycle Model 0.9918 0.8382

68 Mixed Model 0.9909 1.328 0.6899 0.3732
69 Mixed Model 0.9918 4.287 0.777 0.161

70 Pure 1-cycle Model 0.9902 1.103
71 Mixed Model 0.9951 ~ 6 0.9693 0.1173

72 Mixed Model 0.99 2.161 0.878 0.122
73 Mixed Model 0.9904 ~ 6 0.8129 0.05608
74 Mixed Model 0.9932 1.137 0.5611 0.72

75 Mixed Model 0.9934 ~6 0.8792 0.1664
76 Mixed Model 0.9962 3.582 0.8784 0.07015

77 Mixed Model 0.9961 2.815 0.9147 0.2253
78 Pure 2-cycle Model 0.9942 0.9806

79 Pure 2-cycle Model 0.9909 0.8987
80 Mixed Model 0.9895 ~ 6 0.8938 0.08665

81 Mixed Model 0.9954 4.011 0.8919 0.1317
82 Mixed Model 0.9883 ~ 6 0.9547 0.08718
83 Mixed Model 0.9868 ~ 6 0.9077 0.09973

84 Mixed Model 0.9869 ~ 6 0.7851 0.0757
85 Mixed Model 0.9918 ~ 6 0.9323 0.04434

86 Mixed Model 0.9935 1.205 0.4918 0.6921
87 Mixed Model 0.9941 1.443 0.4272 0.6028

88 Pure 2-cycle Model 0.9909 0.8954
89 Mixed Model 0.9953 1.201 0.1843 0.7568
90 Mixed Model 0.9971 5.245 0.7898 0.1124

91 Mixed Model 0.9923 3.417 0.838 0.0927
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Appendix B: Individual analyses of Experiment 2 participants by age group

Age 7

S# Preferred Model R2 β (if pure
model)

β1 (if
mixed
model)

β2 (if
mixed
model)

Weight parameter

4 Pure 1-cycle Model 0.9671 0.8541
5 Pure 2-cycle Model 0.9679 0.7999

7 Pure 2-cycle Model 0.9702 0.7231
11 Pure 2-cycle Model 0.9159 0.6393

12 Pure 1-cycle Model 0.953 1.172
23 Mixed Model 0.9834 5.099 0.8076 0.3009
26 Pure 1-cycle Model 0.9708 0.8965

34 Pure 2-cycle Model 0.954 0.8347
35 Pure 2-cycle Model 0.98 0.8407

36 Pure 2-cycle Model 0.9678 0.844
37 Pure 2-cycle Model 0.9711 0.7457

44 Pure 2-cycle Model 0.9309 0.6064
45 Mixed Model 0.9862 0.9263 0.1871 0.8171
46 Pure 2-cycle Model 0.9815 0.8724

47 Pure 2-cycle Model 0.9694 0.8913
49 Mixed Model 0.9834 1.12 ~ 1.198e-016 0.8441

51 Pure 2-cycle Model 0.9741 0.7607
54 Mixed Model 0.9734 ~ 6 0.8456 0.1137

55 Pure 2-cycle Model 0.9441 0.616

Age 8

S# Preferred Model R2 β (if pure
model)

β1 (if
mixed
model)

β2 (if
mixed
model)

Weight parameter

3 Pure 2-cycle Model 0.9907 0.6755

6 Mixed Model 0.9812 ~ 6 0.7396 0.07806
8 Pure 2-cycle Model 0.9685 0.7598
9 Mixed Model 0.9832 2.799 0.7934 0.1812

15 Pure 2-cycle Model 0.9783 0.8022
18 Pure 1-cycle Model 0.9549 0.6236

19 Mixed Model 0.9785 0.8341 0.5503 0.6477
20 Pure 2-cycle Model 0.9819 0.8637

21 Mixed Model 0.9898 0.8133 0.7233 0.3722
5 Pure 2-cycle Model 0.9801 0.7616
28 Pure 1-cycle Model 0.9716 0.898

39 Pure 2-cycle Model 0.9744 0.6828
43 Pure 1-cycle Model 0.9527 0.8036

56 Pure 2-cycle Model 0.9898 0.8323
58 Pure 2-cycle Model 0.9752 0.8201

59 Mixed Model 0.9951 1.172 0.6843 0.4422
60 Mixed Model 0.9577 3.518 0.8002 0.2006

62 Pure 1-cycle Model 0.9604 1.266
63 Pure 1-cycle Model 0.9869 0.9603

Age 9

(Continued )
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(Continued).

S# Preferred Model R2 β (if pure
model)

β1 (if
mixed
model)

β2 (if
mixed
model)

Weight parameter

3 Pure 2-cycle Model 0.9829 0.7747

4 Pure 2-cycle Model 0.99 0.8436
11 Mixed Model 0.9906 2.93 0.9319 0.208

13 Mixed Model 0.9855 3.418 0.7893 0.0882
14 Mixed Model 0.9848 ~ 6 0.7808 0.08191

15 Mixed Model 0.9798 2.749 0.8802 0.1321
20 Pure 2-cycle Model 0.9911 0.8208
23 Mixed Model 0.9904 4.672 0.8206 0.07354

27 Pure 1-cycle Model 0.9797 0.944
30 Mixed Model 0.9923 2.248 0.9149 0.1114

31 Pure 2-cycle Model 0.9863 0.7388
33 Mixed Model 0.9896 5.512 0.8262 0.1069

36 Mixed Model 0.9887 3.322 0.932 0.1534
39 Mixed Model 0.991 4.124 0.796 0.059
45 Pure 2-cycle Model 0.9927 0.8723

46 Mixed Model 0.9905 ~ 6 0.8901 0.06243
48 Mixed Model 0.9898 5.155 0.7677 0.1462

52 Pure 2-cycle Model 0.9895 0.8603
57 Pure 1-cycle Model 0.9859 0.9504

61 Mixed Model 0.9873 1.203 0.1353 0.7395

Age 10

S# Preferred Model R2 β (if pure
model)

β1 (if
mixed
model)

β2 (if
mixed
model)

Weight parameter

8 Mixed Model 0.995 1.07 0.1769 0.8518

10 Mixed Model 0.9886 4.236 0.6923 0.1373
16 Mixed Model 0.9924 ~6 0.8092 0.1567
17 Mixed Model 0.9881 ~ 6 0.7241 0.1235

18 Pure 2-cycle Model 0.9935 0.8123
19 Mixed Model 0.9914 1.146 0.4696 0.7188

24 Mixed Model 0.9917 1.171 0.2962 0.7266
25 Mixed Model 0.9901 1.106 0.1735 0.8463

28 Mixed Model 0.9882 ~ 6 0.7864 0.09669
34 Mixed Model 0.9882 ~ 6 0.7761 0.05637
37 Mixed Model 0.9623 ~ 6 0.8406 0.1302

41 Pure 2-cycle Model 0.9912 0.9128
43 Mixed Model 0.993 1.092 3.337E-11 0.8035

44 Pure 2-cycle Model 0.9785 0.8404
47 Mixed Model 0.9888 4.522 0.833 0.1082

49 Mixed Model 0.9874 5.864 0.871 0.1056
55 Mixed Model 0.9937 2.041 0.7843 0.168

56 Mixed Model 0.9923 2.35 0.8658 0.1026
62 Mixed Model 0.985 3.432 0.8093 0.07979
63 Pure 2-cycle Model 0.9822 0.8186

728 A. ZAX ET AL.


	Abstract
	Experiment 1
	Method
	Participants
	Stimuli

	Design
	Procedure
	Results and discussion

	Experiment 2
	Method
	Participants
	Stimuli

	Design
	Procedure
	Discussion

	General discussion
	Disclosure statement
	Funding
	References
	Appendix A:  Individual analyses of Experiment 1
	Appendix B:  Individual analyses of Experiment 2 participants by age group

