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Abstract

A left digit effect has been broadly observed across judgment and decision-making

contexts ranging from product evaluation to medical treatment decisions to number

line estimation. For example, $3.00 is judged to be a much greater cost than $2.99,

and “801” is estimated strikingly too far to the right of “798” on a number line.

Although the consequences of the effects for judgment and decision behavior have

been documented, the sources of the effects are not well established. The goal of the

current work is to extend investigations of the left digit effect to a new complex

judgment activity and to assess whether the magnitude of the effect at the individual

level can be predicted from performance on a simpler number skills task on which

the left digit effect has also recently been observed. In three experiments (N = 434),

adults completed a judgment task in which they rated the strength of hypothetical

applicants for college admission and a self-paced number line estimation task. In all

experiments, a small or medium left digit effect was found in the college admissions

task, and a large effect was found in number line estimation. Individual-level variation

was observed, but there was no relationship between the magnitudes of the effects

in the two tasks. These findings provide evidence of a left digit effect in a novel mul-

tiattribute judgment task but offer no evidence that such performance can be

predicted from a simple number skills task such as number line estimation.
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1 | INTRODUCTION

We frequently need to interpret numbers used in judgment and deci-

sion making (e.g., Is an 80% chance very likely? Is a cost of $3.20 a lot

more than $2.75?). It is well documented that people often have diffi-

culty using numerical information, as illustrated by a wide range of

decision phenomena including denominator neglect (Reyna &

Brainerd, 2008), base rate neglect (Bar-Hillel, 1980; Kahneman &

Tversky, 1973), framing effects (Levin & Gaeth, 1988; Tversky &

Kahneman, 1981), anchoring plus insufficient adjustment (Epley &

Gilovich, 2001; Tversky & Kahneman, 1974), and probability distor-

tion (Gonzalez & Wu, 1999; Tversky & Kahneman, 1992), to name just

a few. There is growing reason to believe that such phenomena may

have underpinnings in mental processes associated with numerical

cognition. This prospect has led to recent research into the relation-

ship between judgment biases and numerical cognition, including

whether individual differences in biases might be predicted from

foundational number skills (Patalano et al., 2020; Peters &

Bjalkebring, 2015; Schley & Peters, 2014). The current work focuses

on a phenomenon called the left digit effect or left-digit bias. The goals

This work includes number line estimation scores also used in Williams, Paul, et al. (2020).

The second and third experiments reported here were preregistered (at https://aspredicted.

org/sx7ws.pdf for Exp. 2, and https://aspredicted.org/ym86k.pdf for Exp. 3).
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of the work are to extend the test of the left digit effect to a new

complex judgment task and to assess whether the size of the effect at

the individual level can be predicted from one's left digit effect on a

more basic number skills task where the effect has also recently been

demonstrated.

2 | LEFT DIGIT EFFECT IN JUDGMENT
AND DECISION MAKING

The left digit effect in judgment and decision making refers to the

phenomenon whereby decision-related numbers that cross a left digit

boundary (e.g., 599 vs. 601, on either side of 600) are treated as more

different than is warranted while those that do not cross a left-digit

boundary (e.g., 603 and 605) are not. The term is attributed to

Thomas and Morwitz (2005) who were motivated by the common

belief that people underestimate the cost of products with prices end-

ing in .99. They found that prices are judged as more different in mag-

nitude when they have a different leftmost digit than when they do

not. For example, a pen costing $3.00 is judged to be more expensive

than one costing $2.99, while pens costing $3.60 and $3.59 are

judged to cost about the same (Anderson & Simester, 2003; Lin &

Wang, 2017; Manning & Sprott, 2009; Schindler & Kibarian, 1996;

Thomas & Morwitz, 2009). The effect has been extended to smokers'

self-reported higher likelihood of making a cessation attempt as

increases in cigarette costs cross a left-digit boundary (e.g., from

$5.80 to $6.00 per pack; MacKillop et al., 2014); to health-motivated

consumers being more likely to buy and consume foods with nine-

ending calorie counts than those with round number counts (Choi

et al., 2019); and to evaluations of products based on consumer prod-

uct ratings (Thomas & Morwitz, 2005).

In addition to laboratory studies, studies drawing on existing

records have been used to demonstrate the left digit effect. In particu-

lar, home sales final transaction prices were found to be higher

(relative to market value) for homes initially listed just below

(e.g., $599,995) versus at a whole number (e.g., $600,000; Beracha &

Seiler, 2015); discontinuous changes in selling prices were observed

for used cars with odometer readings on either side of a left-digit

boundary (Lacetera et al., 2012); and lower public assessments of

school performance were given for schools with student grade aver-

ages just below a left-digit boundary (Olsen, 2013). Most recently, the

left digit effect was strikingly demonstrated in physicians' treatment

decisions based on evaluation of patients' ages (Olenski et al., 2020).

In an analysis of several years of Medicare records, physicians were

found more likely to recommend heart surgery for patients whose

birthdates indicated they were 2 weeks younger than 80 years of age

versus 2 weeks older. The physicians did not recommend surgery at

different rates for patients of different ages that did not cross a

decade boundary (e.g., 2 weeks younger vs. older than 78).

The source of the left digit effect has not been well established.

For many years, the effect was attributed to domain specific heuristics

such as the rounding of dollar values (Gabor & Granger, 1964). More

recently, in the context of odometer readings, an attention-based

heuristic was proposed whereby one devotes increasingly less atten-

tion as one moves rightward in a string of digits due to cognitive limits

in information processing (Lacetera et al., 2012). Others have

suggested that rather than being specific to decision making, the left

digit bias might be related to the processing of numerical magnitudes

more generally (Macizo & Ojedo, 2018; Thomas & Morwitz, 2005).

This would mean that the bias, rather than arising during the transla-

tion of a decision-related numeral into a subjective rating (e.g., of

costliness), arises even when the goal is simple magnitude estimation

(e.g., place “570” on a number line). However, at the time this

possibility was suggested, there was no known evidence of a left digit

effect in magnitude estimation (but see Nuerk et al., 2004, for

numerical comparison tasks).

3 | LEFT DIGIT EFFECT IN NUMBER LINE
ESTIMATION

Skill in estimating numerical magnitude is central to many types of

thinking. A numerical magnitude estimation task that has been used in

several hundred studies as a skills assessment tool, an educational

training tool, and a probe of underlying cognitive processes is the

number line estimation (NLE) task. A standard version of the task

involves estimating the location of a target numeral (e.g., “540”) on a

line labeled only at its endpoints (e.g., 0 and 1000), as in Figure 1. A

common measure of an individual's performance on the task is overall

accuracy, often reported as percent absolute error (PAE), which is com-

puted as jactual placement − correct locationj/range of target

values * 100, averaged over all trials. Extensive work reveals that over-

all accuracy in children and adolescents predicts diverse numerical

skills at later ages, including standardized math achievement (Booth &

Siegler, 2008; Hoffmann et al., 2013; Holloway & Ansari, 2009;

Schneider et al., 2009, 2018). NLE accuracy in adults is also related to

quantitative skills including more precise use of numbers in decision

making (Patalano et al., 2020; Peters & Bjalkebring, 2015; Schley &

F IGURE 1 Example of a single trial of the number line estimation
task. Note: Participants indicate the location of a target number
(“24” here) on the line with a mouse click. A red line appears in the
selected location to indicate that a response was recorded. A new
target number appears in the same position above the line on each trial
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Peters, 2014), and so the NLE task might become an important tool

for predicting, understanding, and training decision-related skills.

NLE error is not unsystematic. Though not the focus of the pre-

sent work, there is one pattern of bias in NLE that has received much

attention. In its simplest form, it is that adults tend to overestimate

target locations on one half of the line (responding too far to the right)

and to underestimate target locations on the other half of the line

(responding too far to the left). This pattern has been modeled as

an inverse-S-shaped or an S-shaped curve, with a parameter

estimate β indexing degree and direction of bias (e.g., Cohen &

Blanc-Goldhammer, 2011; Slusser & Barth, 2017). Interestingly, rather

than being specific to NLE, this bias has been found across a wide

range of tasks that can be described as involving proportion judgment

(see Hollands & Dyre, 2000; Zax et al., 2019; Zhang & Maloney, 2012,

for reviews). Additionally, the pattern of bias is sometimes multi-

cyclical, consistent with the use of intermediate reference points to

divide a whole into smaller parts (Cohen & Blanc-Goldhammer, 2011;

Slusser & Barth, 2017; Zax et al., 2019). This proportion judgment bias

was, until recently, the primary known source of systematic error on

the NLE task.

Recently, however, another type of systematic error has been

identified: a robust left digit effect (Lai et al., 2018; Williams, Paul,

et al., 2020) broadly similar to that seen in judgment and decision-

making tasks. Lai et al. discovered that three-digit numbers of similar

magnitude but different leftmost hundreds-place digits (e.g., 597 and

601) are placed in very different locations on a number line even

though the numbers should be placed in approximately the same loca-

tion. In contrast, numbers with different tens-place digits (falling on

either side of a fifties boundary; e.g., 248 and 252; also four digits

apart) are placed in the same location, suggesting that the phenome-

non extends only to the leftmost digit (at least for three-digit num-

bers). This left digit effect in NLE is very large (ds > 1), occurs for both

speeded and self-paced tasks, and occurs even when numbers with

similar magnitudes are separated by many intervening trials (Williams,

Paul, et al., 2020). There is also noticeable individual variation in that

some individuals demonstrate a larger left digit effect than others.

Collectively, these findings offer the first evidence of a left digit effect

in numerical magnitude estimation and raise the likelihood that the

left digit effect in decision making may arise from cognitive processes

associated with more basic number skills given that it arises even in

NLE tasks.

4 | POSSIBLE RELATIONSHIP BETWEEN
LEFT DIGIT EFFECT MEASURES

The left digit effect in NLE is important in its own right as a novel bias

in symbolic number processing and because the NLE task, given its

simplicity, can be used to better understand why the effect arises and

how to reduce it. A further question that arises in light of the discov-

ery of the left digit effect in NLE is whether it is related to the left

digit effect observed in judgment tasks of the type described earlier

(pricing, medical decisions, product evaluations, etc.). If similar mental

processes contribute to the left digit effect across tasks, and given

that we know there is large individual-level variation in the magnitude

of the left digit effect in NLE, we might expect that the size of one's

left digit effect in NLE would predict the size of the same individual's

left digit effect in judgment. A correlation in performance on the two

tasks would provide suggestive evidence of a common underlying

mechanism across tasks and would suggest that more complex judg-

ments arise from more basic processes of numerical cognition. Such a

correlation would also suggest that a NLE task could potentially be

used to predict the size of one's left digit effect in a wide range of

judgments or be used to train reductions in left-digit bias. For these

reasons, it is important to begin to understand whether there is any

relationship between measures of the left digit effect across judgment

tasks.

The research approach used here is similar to that which led to a

recent discovery of a different relationship between biases in NLE

and decision making. It is well known that the interpretation of proba-

bilities in decision making can be modeled as an inverse S-shaped

curve: People overweight small probabilities and underweight large

ones (Tversky & Kahneman, 1992). This bias had for many years been

attributed to a range of decision-related cognitive processes from

mental simulations of outcomes (Hogarth & Einhorn, 1990) to affec-

tive responses (Rottenstreich & Hsee, 2001) but not to more basic

processes related to quantitative cognition. However, recently, the

inverse S-shaped pattern of bias in interpreting probabilities was

observed to be similar to that in tasks of proportion judgment such as

NLE (as described earlier). When bias measures were collected on

both tasks, the degree of one's bias in interpreting probabilities was in

fact correlated with one's bias in NLE. The findings suggest proportion

judgment as one explanation for both biases and NLE training as a

possible way to reduce bias in decision making (Patalano et al., 2020).

The present work uses a similar individual-variation, correlational

approach (see also e.g., Peters & Bjalkebring, 2015; Schley &

Peters, 2014, for other uses of this approach), but with a focus now

on common biases in the interpretation of numerals on either side of

left-digit boundaries.

5 | OVERVIEW OF EXPERIMENTS

One goal of the three experiments reported here is to test whether a

left digit effect emerges in a new multiattribute judgment task: a

laboratory-based “college admissions” task. We developed this task in

part simply as a means of assessing theleft digit effect in judgment in

the laboratory and also because past laboratory studies have primarily

used single-attribute tasks involving prices, and a goal here was to

generalize to a more complex task that could be conducted in the lab-

oratory. The task we developed involves reviewing 20 hypothetical

college applicants' portfolios and rating the strength of each candidate

for admission. Each portfolio consists of five dimensions with numeri-

cal values: grade point average (GPA), quality of letters of reference,

quality of extracurricular activities, SAT verbal score, and SAT math

score. We considered the possibility that, given that participants
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would not have previous task experience and would likely use attri-

butes inconsistently, any small differences in the interpretations of

attribute values might have little observable influence on ratings.

However, based on past work, we predicted that the left digit effect

would emerge in this new judgment task.

In the college admissions task, four critical portfolios given to each

participant were used to create a measure of one's left digit effect: a

boundary pair and a non-boundary pair (as shown in Table 1). The two

portfolios in the boundary pair (low and high boundary portfolios) have

identical values on all dimensions except they diverge slightly across a

left-digit boundary on SAT verbal scores (599 vs. 601; or on both SAT

verbal and math scores in Experiments 2 and 3). Similarly, the two port-

folios in the non-boundary pair (low and high non-boundary portfolios)

have identical values on all dimensions except they diverge slightly on

SAT verbal scores not around a left-digit boundary (621 vs. 623; or on

both SAT verbal and math scores in Experiments 2 and 3). If ratings of

paired applicants are more different when the values of a dimension

are on either side of a hundreds boundary (as in the boundary pair) ver-

sus when they are not (as in the non-boundary pair), this would be evi-

dence of a left digit effect in this task and would thus extend the bias to

a novel, complex judgment task.

With this design, boundary portfolios cannot be directly com-

pared with non-boundary portfolios because the SAT scores near a

left-digit boundary are different in magnitude from those farther from

such a boundary (and the two types of portfolios differ on other

dimensions as well), so we do not conduct a repeated measures

analysis of variance (ANOVA). Rather, after reporting the mean rating

for each portfolio to show the pattern of means in the sample data,

we compute for each participant a judgment difference score = (rating

of high boundary portfolio − rating of low boundary portfolio) − (rating of

high non-boundary portfolio − rating of low non-boundary portfolio). This

measure isolates the pattern of interest and is modeled after one used

in past studies to compute the left digit effect in NLE, as will be

described shortly. A positive judgment difference score (reliably >

0 across participants, on average, by a one-sample t test) would con-

stitute evidence of a left digit effect because it means that the bound-

ary ratings differ more than would be expected based on the

difference in the non-boundary ratings.

A second goal of the three experiments is to assess whether there

is a relationship between the magnitude of one's left digit effect in the

college admissions task and the corresponding measure in a NLE task.

After completing the complex judgment task, participants completed a

standard self-paced NLE task with numbers ranging from 0 to 1000.

The number line task was administered as part of a separate study

(unrelated to the present report) investigating the effects of accuracy

feedback on performance, so only performance on the first block of

the task (120 trials; prior to any feedback manipulation) is reported

here. As in past work, we focus on eight critical pairs of target values,

called hundreds pairs, with similar magnitudes but different leftmost

hundreds place digits (e.g., 199 and 201). Of interest is whether the

larger value in each pair is placed too far to the right of the smaller

value on the line (assuming they should be placed in approximately

the same location given the numerical range and physical line length

used here). Following past work, we compute a measure of the left

digit effect called the hundreds difference score = (placement for larger

numeral − placement for smaller numeral) for each of the eight pairs.

We then average the difference scores to create one mean hundreds

difference score (which will just be referred to just as the hundreds

difference score). A positive hundreds difference score (reliably >

0 across participants, on average, by a one-sample t test) would con-

stitute evidence of a left digit effect because it means that the bound-

ary ratings differ more than would be expected if individuals were

responding accurately (i.e., if they were placing both values in the

same location on the line and thus the difference were 0).

We note that although the judgment difference score in the col-

lege admissions task is modeled after the hundreds difference score in

the NLE task, the measures differ in two ways. The first is in terms of

the baseline used in each task. In the college admissions task, there is

no objectively correct difference in how two portfolios that differ by a

few SAT points should be rated, so the difference in ratings for non-

boundary portfolios is used to establish a baseline. In the NLE task,

there is an objective difference in how numbers that are only a few

units apart should be placed on the number line. Namely, the numbers

should be placed in nearly the same location, so the baseline is 0. The

second way the two measures differ from one another is simply that

there are fewer trials contributing to the computation of the effect in

TABLE 1 Target stimuli (college applicant portfolios) used in all experiments

Experiment 1 Experiments 2 and 3

Portfolio type Value type Label GPA Letters Essay SAT-V SAT-M SAT-V SAT-M

Boundary Low DP 3.5 3 3 599 622 699 598

Boundary High LDa 3.5 3 3 601 622 701 602

Non-boundary Low DH 3.6b 3 3 621 589 712 611

Non-boundary High SW 3.6b 3 3 623 589 714 615

Note: Boundary stimuli were identical on all dimensions except SAT-V (Experiment 1) or both SAT-V and SAT-M (Experiments 2 and 3). For SATs, low and

high boundary scores were a few points apart, below and above a hundreds boundary (e.g., 599 and 601). The same was true of non-boundary stimuli

except that SATs were not near a hundreds boundary (e.g., 621 and 623).

Abbreviation: GPA, grade point average.
aChanged in Experiment 2 and Experiment 3 to LG so that there would be no overlapping initials with DP.
bChanged in Experiment 2 and Experiment 3 to 3.4.
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the college admissions task than in the NLE task. This was intentional

in that, because trials of the college admissions task require greater

time and effort than those of the NLE task, a shorter task was consid-

ered important for sustaining participants' motivation and attention

(and is consistent with the use of similar types of tasks in past work;

e.g., Peters et al., 2006).

Of focal interest is whether measures of the left digit effect are

correlated across tasks. We know of only one existing study on the

left digit effect in NLE as a predictor of performance on more complex

tasks. In this past study, no correlation was found between the left

digit effect in NLE and SAT math score (Williams, Paul, et al., 2020).

However, unlike the Williams, Paul, et al. study, the present work spe-

cifically uses measures of the left digit effect in both of the tasks

rather than a general math score. In other work, Patalano et al. (2020)

did find a correlation between curvilinear bias in NLE and in interpre-

tation of probabilities, which speaks to NLE as a predictor of decision-

making skills more generally. A power analysis (1 − β = .80, α = .05)

indicated samples of N = 120 would be needed to detect a moder-

ately small correlation (r = .25) between measures here.

6 | EXPERIMENT 1: COLLEGE
ADMISSIONS TASK

In Experiment 1, participants completed a college admissions task

followed by a NLE task. In the college admissions task, SAT verbal

scores were used to create high and low boundary portfolios

(SAT verbal 599 vs. 601) and high and low non-boundary portfolios

(SAT verbal 621 vs. 623). Using participants' ratings of the four critical

portfolios, we computed a judgment difference score. A positive judg-

ment difference score (reliably > 0 across participants, on average)

would constitute evidence of a left digit effect. For the NLE task, we

computed a hundreds difference score using participants' estimates of

eight critical pairs of values falling around hundreds boundaries. We

calculated the average difference score across eight pairs, yielding a

single hundreds difference score per participant. A positive hundreds

difference score (reliably > 0 across participants, on average) would

constitute evidence of a left digit effect. A reliable correlation

between individual-level judgment difference scores and hundreds

differences scores would demonstrate that the NLE task can be used

to predict the size of one's left digit effect in decision making and

would provide evidence of common cognitive contributors to the

effect across tasks. We predicted that we would observe a left digit

effect in both tasks and that the magnitude of the left digit effect

would be correlated across tasks.

6.1 | Method

6.1.1 | Participants

Adults (N = 134 undergraduates; 77 women and 57 men) completed

the study in exchange for introductory psychology course credit.1 Par-

ticipants came to the lab individually for 1-h sessions, where they

completed the college admissions task followed by the NLE task.2

They were sequentially assigned to a counterbalancing order for the

admissions rating task (Order 1 n = 68; Order 2 n = 66). All studies

were approved by the Wesleyan University Institutional Review

Board; written informed consent was obtained from all participants.

6.1.2 | Admissions rating task

The task was to review hypothetical portfolios of college applicants and

to rate the strength of each applicant for admission. It was programmed

using Psychopy software (www.psychopy.org; Peirce et al., 2019). Each

portfolio was labeled with the applicant's initials (e.g., “AK”) and values

for five quantitative dimensions: GPA (1.0–4.0 scale), rated quality

of letters of reference (1–3 scale, where 1 is low) rated quality of essay

(1–3 scale, where 1 is low), SAT verbal score3 (200–800 point scale),

and SAT math score (200–800 point scale). See Figure 2 for a sample

portfolio (and supporting information for all stimuli). Participants were

asked to imagine they were admissions officers at a school that treats

all five dimensions as equally important. They were also informed of

the range of possible values for each dimension. Ratings of applicants

were elicited with a sliding scale (a horizontal bar 8 in. long with an

F IGURE 2 Example of a single trial of
the college admissions task. Note: Screen
images represent (a) the start of a trial and
(b) after a participant clicks on the line
(the triangle appears wherever the line is
first clicked and then can be slid along the
line). GPA, grade point average
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adjustable slider as in Figure 2) labeled with endpoints “Weak” and

“Strong.” The triangle slider shown in Figure 2 appeared after the first

click on each trial, in the location the line was clicked, and then could be

slid to adjust one's response. For analyses, individual responses were

translated to a number between 0 and 100.

There were four critical portfolios: a low and a high boundary

portfolio and a low and a high non-boundary portfolio (see Table 1).

The two boundary portfolios were identical to one another except

their SAT verbal scores differed by two points that crossed a hun-

dreds boundary (599 vs. 601). The two non-boundary portfolios were

also identical to one another except their SAT verbal scores differed

by two points that did not cross a hundreds boundary (621 vs. 623).

The boundary portfolios had lower SAT verbal scores than the non-

boundary ones but higher GPAs and SAT math scores, resulting in

four similarly strong portfolios. The remaining 16 portfolios were

fillers, created to reflect a varied pool of applicants and to disguise

study goals.

Participants saw and rated portfolios one at a time. In Trials 1–6,

the same filler portfolios were presented in the same order to all par-

ticipants. These trials were treated as practice to orient participants to

the range of candidates and the task (though this purpose was not

revealed to participants). The remaining 14 portfolios (presented in

Trials 7–20) were shown in one of two orders. In Order 1, critical

portfolios were presented at Trial 7 (low boundary), 10 (low

non-boundary), 13 (high boundary), and 19 (high non-boundary). In

Order 2, they were reversed (e.g., Trial 7 was a filler, and Trial 8 was

the high non-boundary).

6.1.3 | NLE task

This task (Lai et al., 2018) assesses one's ability to identify the approx-

imate locations of numbers on a response line. The task was

programmed using Psychopy software. On each trial, participants

were presented with a target numeral (e.g., “47”) centered above a

horizontal line (20 cm wide) with endpoints labeled “0” on the left and

“1000” on the right. A total of 120 unique target numerals were used

including eight pairs of numerals around hundreds boundaries (16 tar-

gets: 199/202, 298/302, 398/403, 499/502, 597/601, 699/703,

798/802, and 899/901); the remaining target numerals were evenly

sampled throughout the full 0–1000 range (e.g., 235, 367, 411; see

supporting information for full list). Target numerals were presented

individually in a different computer-generated random order to each

participant.

Participants were seated in front of a computer and given instruc-

tions to select a position on the line (with a mouse click) to estimate

the location of the given target numeral (as quickly and accurately as

possible), a 500-ms pause separated trials. The location of each mouse

click was recorded and converted to a number between 0 to 1000,

corresponding to the selected location on the line. While participants

completed three blocks of 120 trials each, we report only the first

block here (later blocks were administered as part of a separate

study).4

6.2 | Results

6.2.1 | College admissions task

There were no order effects (t(132) = 0.57, standard error (SE) = 2.49,

p = .572). We collapsed over order for further analyses. The mean rat-

ing for each of the four types of critical stimuli are shown in Figure 3.

The figure reveals that, for the pair of boundary portfolios, partici-

pants gave higher ratings to the portfolio with the higher SAT verbal

score (M = 71.40, standard deviation (SD) = 13.10) relative to the

portfolio with the lower score (M = 70.14, SD = 12.30). For non-

boundary portfolios, higher ratings were given by participants to the

portfolio with the lower SAT verbal score (M = 70.87, SD = 11.63)

relative to the portfolio with the higher score (M = 69.43, SD = 12.36).

Although neither difference was statistically significant (jtjs < 1.60,

ps > .100), the focal question of interest is whether the difference in

ratings for the boundary portfolios (which are identical except that

SAT verbal scores differ by two points across a left-digit boundary) is

reliably greater than that for the non-boundary portfolios (which are

identical except that SAT verbal scores differ by two points across a

non-boundary and thus provide a baseline for comparison). This ques-

tion cannot be answered with the paired t tests.

To answer this question, we created a judgment difference score =

(rating of high boundary portfolio − rating of low boundary portfolio)

− (rating of high non-boundary portfolio − rating of low non-boundary

portfolio) for each participant. On this measure, a value greater than

0 indicates a left digit effect because it means that the difference in

ratings for the boundary portfolios is greater than the difference for

the non-boundary portfolios. The judgment difference score across

participants was normally distributed with a M = 2.69 (SD = 14.38,

F IGURE 3 Effects of boundary type and relative magnitude of

SAT verbal score on ratings of strength of admissions applicant
portfolios using a sliding scale (Experiment 1). Note: Analysis of the
judgment difference score (see Section 6.2) reveals that the high
boundary minus the low boundary rating is greater than the high non-
boundary minus the low non-boundary rating (p < .05). Error bars
indicate 1 unit of SE in each direction. In all studies, boundary and
non-boundary ratings are not directly comparable (see Section 6.1)
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range = −41–37) and was found to be significantly different from

0 (t(133) = 2.16, SE = 1.24, p = .032, d = 0.19, CI[0.23, 5.14]), evidence

of a small left digit effect (57% of participants had scores > 0). There

were no gender differences in scores (t(132) = 0.83, SE = 2.52,

p = .410).

6.2.2 | NLE task

Following Lai et al. (2018), individual estimates were excluded if they

differed from the group mean for a target numeral by more than

2 SDs (M = 3.66% of trials). All 120 trials were used to compute a

measure of overall accuracy called PAE = jactual placement − correct

locationj/1000 * 100. Consistent with past work, the mean error was

3.98% (SD = 1.20; range = 1.95–9.01). We calculated a hundreds dif-

ference score = placement for larger numeral − placement for smaller

numeral for each critical pair, then calculated the average across eight

pairs yielding one average hundreds difference score for each partici-

pant. Hundreds difference scores greater than 0 indicate a left digit

effect. Across participants, the hundreds difference score had a

M = 25.89 (SD = 21.53, range = −37.63–85.43) and was significantly

greater than 0 (t(133) = 13.92, SE = 1.86, p < .001, d = 1.20, CI[22.21,

29.57]), evidence of a large left digit effect (89% of participants had

scores > 0). There were no gender differences (t(132) = −0.18,

SE = 3.78, p = .854).

6.2.3 | Relationship between measures

We assessed the relationship between the judgment difference

score and hundreds difference score, the two measures of the left

digit effect, using a Pearson correlation. Although the correlation

was in the predicted direction, no statistically significant relation-

ship was found, r(132) = −.11, p = .224. There was also no relation-

ship between the judgment difference score and the measure of

overall accuracy on the NLE task called PAE, r(132) = −.04,

p = .664.

6.3 | Discussion

We found a small left digit effect in the college admissions task and a

large left digit effect in the NLE task (the latter similar in magnitude to

past work; Lai et al., 2018). Experiment 1 provides evidence that the

left digit effect, while smaller in this context, does extend to the novel

judgment task. There was also large variation in measures of the left

digit effect on both tasks for individual participants. However, there

was no reliable relationship between the magnitudes of one's left digit

effect across the two tasks. The latter finding offers no evidence of

common cognitive contributors to individual differences in the left

digit effect across tasks and no evidence that the NLE task can be

used to predict bias in more complex judgment tasks such as the col-

lege admissions task.

One unexpected pattern in the college admissions task was that

the difference in the ratings for the high and low boundary portfolios

was not large, and the direction of the difference reversed for the

non-boundary portfolios. This pattern, while not inconsistent with a

left digit effect, is still unexpected. We considered the possibility that

higher value portfolios were systematically underrated or that the

lower value ones were overrated, either of which could produce the

observed pattern. While we did not identify any particular elements

of Experiment 1 that would give rise to such a pattern, there were

some procedural decisions that might have influenced ratings more

generally that we address in Experiment 2.

One such procedural decision of Experiment 1 was that we spa-

ced boundary portfolios farther apart (eight intervening trials) than

non-boundary portfolios (five intervening trials). The unmatched spac-

ing was intended to obscure the study's goals. However, greater expe-

rience with the task suggested to us that, even with matched spacing,

the goals of the study would not be transparent. A second limitation

of Experiment 1 was that the placement of critical portfolios among

fillers was not counterbalanced; rather, each critical portfolio was pre-

ceded by different fillers. It is possible that the immediately preceding

portfolios influenced the evaluation of the critical portfolio. In Experi-

ment 2, we modify the procedure to remove both of these confounds.

We also add a manipulation of SAT math score (similar to the manipu-

lation of SAT verbal score) in an attempt to amplify any left digit

effect that might exist.

7 | EXPERIMENT 2: MODIFIED COLLEGE
ADMISSIONS TASK

Experiment 2 was the same as Experiment 1 except for modifications

to the counterbalancing scheme and the four critical portfolios for the

college admissions task. Critical portfolios were presented in trials

10, 13, 16, and 19; the portfolios appeared in these positions in one

of four counterbalancing orders. The 16 filler items from Experiment

1 were presented in a single order across the remaining trials. The

aims of this design were to ensure that the two boundary portfolios

and the two non-boundary portfolios were separated by the same

number of intervening fillers and that each critical portfolio appeared

an equal number of times in each of the four locations. To amplify the

size of any left digit effect, we also manipulated SAT math score

(along with SAT verbal score; see Table 1). For example, if an SAT ver-

bal score fell just above a hundreds boundary for one of the critical

portfolios, the SAT math score also fell just above a different hun-

dreds boundary in the same portfolio (e.g., SAT verbal score of

701 and SAT math score of 602). (Additional changes to critical port-

folios are reported in Section 7.1.) No changes were made to the NLE

task. As in Experiment 1, we expected the judgment difference score

and hundreds difference score across participants to be reliably

greater than 0, indicating left-digit effects in both tasks. We also

expected the effect size for the judgment difference score to be

greater than it was in Experiment 1. Finally, if the lack of correlation

between measures in Experiment 1 was due to the left digit effect in
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the college admissions task having been weakly elicited, we would

expect to see a correlation here.

7.1 | Method

7.1.1 | Participants

Adults (N = 157 undergraduates; 92 women, 64 men, and 1 uni-

dentified) completed the study in exchange for introductory

psychology course credit.5 Participants came to the lab individually for

1-h sessions during which time they completed the college admissions

task, the NLE task, and several unrelated tasks. Participants were

sequentially assigned to one of four counterbalancing orders of the

college admissions task (n ≈ 39 per order).

7.1.2 | Materials and procedure

The college admissions task was the same as Experiment 1 with the

following exceptions. First, the filler stimuli appeared in a single order

for all participants (the sequencing matched Experiment 1, Order 1 in

supporting information); the four critical stimuli were presented on tri-

als 10, 13, 16, and 19. Second, participants saw the critical stimuli in

one of four counterbalancing orders (LB = low boundary, LN = low

non-boundary, HB = high boundary, and HN = high non-boundary):

HB/HN/LB/LN (Order 1), HN/HB/LN/LB (Order 2), LB/LN/HB/HN

(Order 3), and LN/LB/HN/HB (Order 4). Third, the four target stimuli

were modified from Experiment 1, as shown in Table 1. Most notably,

SAT math scores, rather than being the same across paired portfolios,

differed by four points that crossed a hundreds boundary (boundary

portfolio) or by four points that did not cross a hundreds boundary

(non-boundary portfolio). Two GPAs were also changed in order to

better equate overall strength of boundary and non-boundary portfo-

lios (though the design does not depend on these being equated).

7.2 | Results

7.2.1 | College admissions task

There were no order effects (F(3,153) = 0.60, SE = 196.45, p = .617).

We collapsed over order for further analyses. The mean rating for

each of the four critical stimuli is shown in Figure 4. The figure reveals

that, for the pair of boundary portfolios, higher ratings were given by

participants on average to the portfolio with the higher SAT scores

(M = 76.54, SD = 11.69) relative to the lower scores (M = 71.43,

SD = 11.59), a larger positive difference than in Experiment 1. For

non-boundary portfolios, higher ratings were also given to the portfo-

lio with the higher SAT scores (M = 74.59, SD = 12.27) over the lower

scores (M = 73.65, SD = 12.41), but the difference was much smaller,

as predicted. The difference in ratings for the high and low boundary

portfolios was statistically significant (t(156) = 5.78, SE = 0.88,

p < .001), while the difference for the non-boundary portfolios was

not (t(156) = 1.17, SE = 0.81, p = .244).

As in Experiment 1, we created a judgment difference score for

each participant. Recall that a value greater than 0 indicates that the

difference in ratings of the two boundary portfolios is greater than

that of the two non-boundary portfolios and thus that there is a left

digit effect. The judgment difference score across participants was

normally distributed with a M = 4.17 (SD = 13.96, range = −41–33)

and was significantly different from 0 (t(156) = 3.74, SE = 1.11,

p < .001, d = 0.30, CI[1.96, 6.37]), evidence of a moderate left digit

effect (60% of participants had scores > 0). There were no gender dif-

ferences in scores (t(154) = 1.13, SE = 2.28, p = .262).

7.2.2 | NLE task and relationship between tasks

After outliers were removed (M = 4.45% of trials), PAE was 3.89%

(SD = 1.28; range = 1.50–8.14), similar to Experiment 1. If leftmost

digits influence performance, estimates should be greater for target

numerals just above a hundreds boundary than for those just below

the boundary. Across participants, the hundreds difference score had

a M = 19.98 (SD = 19.51, range = −31.14–69.43) and was significantly

greater than 0 (t(156) = 12.83, SE = 1.56, p < .001, d = 1.02, CI[16.90,

23.05]), evidence of a large left digit effect (86% of participants had

scores > 0). There were no gender differences (t(154) = 0.28,

SE = 3.19, p = .430). To test for a relationship between the judgment

difference score and the hundreds difference score, we ran a Pearson

correlation. No statistically significant relationship was found, r(155)

= .02, p = .777 (further, the correlation was positive, while it was neg-

ative in the first study). There was also no relationship between the

judgment difference score and the PAE (r(155) = −.10, p = .228). Both

findings are similar to those of Experiment 1.

F IGURE 4 Effects of boundary type and relative magnitude of
SAT verbal and math scores on ratings of strength of admissions
applicant portfolios using a sliding scale (Experiment 2). Note: Analysis
of the judgment difference score (see Section 7.2) reveals that the
high boundary minus the low boundary rating is greater than the high
non-boundary minus the low non-boundary rating (p < .05). Error bars
indicate 1 unit of SE in each direction
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7.3 | Discussion

The study replicates the finding of a left digit effect in the college

admissions task. In addition, the ratings of the four critical portfolios

followed the anticipated pattern: Portfolios with the high boundary

values were rated as much stronger than those with the low boundary

values, while portfolios with high non-boundary values were rated as

only slightly stronger than those with low non-boundary values. We

do not know whether any specific methodological modifications con-

tributed to the pattern of findings but suspect that the modified coun-

terbalancing scheme contributed to high values now being rated

consistently higher than low values. It is also likely that the manipula-

tion of both SAT verbal and SAT math scores amplified the left digit

effect in Experiment 2 (as only verbal scores were manipulated in

Experiment 1). Consistent with Experiment 1, there was no relation-

ship between one's left digit effect in the college admissions task and

the NLE task, suggesting that the null finding in Experiment 1 was not

due to the weaker elicitation of the effect there.

The findings thus far provide evidence of a left digit effect in the

college admissions task and the NLE task and no relationship between

the size of the left digit effect in the two tasks. In Experiment 3, we

sought to replicate and extend the finding from Experiment 2. We

repeated the procedure of Experiment 2 except that, for the college

admissions task, we used a different type of response scale. Specifi-

cally, rather than the sliding response scale (which used verbal bound-

aries of “weak” and “strong”), we used a numerical response scale

(i.e., rate portfolio strength on a scale from 1 to 100). The purpose of

this change is to ensure that the left digit effect emerges across com-

monly used response modalities (and thus that the effect is not driven

by the conversation of a magnitude to a particular response format).

As in Experiments 1 and 2, we also considered the relationship

between measures of the left digit effect across tasks. However, with

no reason to predict that a relationship might exist only with a numer-

ical response scale, we expected to replicate the finding of no rela-

tionship between task measures here.

8 | EXPERIMENT 3: MODIFIED COLLEGE
ADMISSIONS TASK WITH NUMERICAL
RESPONSE SCALE

Experiment 3 was similar to Experiment 2 except for a change in the

scale used to elicit ratings in the college admissions task (as well as

one procedural change described in Section 8.1). Participants provided

ratings on a numerical scale from 0 = weak to 100 = strong by typing a

numeral between 0 and 100 into a text box. If the left digit effect in

the college admissions task generalizes across response modalities, it

should replicate here: The difference between high and low boundary

ratings should be greater than the difference between high and low

non-boundary ratings, with the latter close to 0, as in Experiment

2. Alternatively, we did consider that the numerical scale might be less

intuitive and that responses might be more difficult to recall across

trials. As a result, responses might be less consistent across trials,

which could obscure any left-digit bias. However, despite this possibil-

ity, based on the findings of Experiments 1 and 2, we predicted that

we would replicate the left digit effect in both tasks but that the two

measures of the effect would again not be correlated with one

another.

8.1 | Method

8.1.1 | Participants

Adults (N = 143 undergraduates; 83 women and 60 men) completed

the study in exchange for introductory psychology course credit.6 The

first 57 participants came to the lab individually for 1-h sessions dur-

ing which time they completed the college admissions task and the

NLE task; the remainder participated remotely with tasks adminis-

tered through a web browser (for health safety during a virus out-

break).7 Participants were sequentially assigned to one of four

counterbalancing orders of the college admissions task (n ≈ 36 per

order).

8.1.2 | Materials and procedure

The college admissions task was the same as Experiment 2 with the

exception that the sliding response scale was replaced with the text

label “Rating (from 0 = weak to 100 = strong)” followed by a text box

for one's response. The NLE task was the same as that used in Experi-

ments 1 and 2. The overall procedure was also the same as in Experi-

ments 1 and 2 with the exception that some participants engaged in

tasks remotely. For the latter group, both the college admissions task

and the NLE task were reprogrammed using lab.js software (lab.js.org;

Henninger et al., 2019) and administered using the Open Lab platform

(open-lab.online). Remote participants were instructed to sit in a quiet

room with no distractions for the duration of the study. They spoke to

the experimenter by phone at the start and end of their scheduled

session and the experimenter was available by phone throughout the

session to answer questions, a procedure intended to match the in-

person experience as closely as possible.

8.2 | Results

8.2.1 | College admissions task

There was no procedural (in-person vs. remote) effect (t(141) = −0.46,

SE = 2.29, p = .645). Unlike Experiments 1 and 2, there was an order

effect (F(3, 139) = 5.09, MSE = 163.91, p = .002, in that the judgment

difference score was largest for Order 2 and smallest for Order

1 (all means were > 0 except Order 1). As in Experiments 1 and 2, we

collapsed over order for further analyses. The mean rating for each of

the four critical stimuli is shown in Figure 5. The figure reveals that for

the pair of boundary portfolios, higher ratings were given by
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participants to the portfolio with the higher SAT scores (M = 81.32,

SD = 9.60) relative to the lower scores (M = 77.07, SD = 10.90), similar

to (but smaller than) the difference reported in Experiment 2. For

non-boundary portfolios, higher ratings were also given by partici-

pants to the portfolio with the higher SAT scores (M = 80.07,

SD = 9.43) over the lower scores (M = 78.70, SD = 9.87), but the dif-

ference was very small, as in Experiment 2. The difference in ratings

for the high and low boundary portfolios was statistically significant

(t(142) = 5.15, SE = 0.83, p < .001) as was that for the non-boundary

portfolios (t(142) = 2.22, SE = 0.62, p = .028).

As in Experiments 1 and 2, of focal interest was the judgment dif-

ference score. The judgment difference score across participants was

normally distributed with M = 2.88 (SD = 13.35, range = −35–47) and

was significantly different from 0 (t(142) = 2.58, SE = 1.12, p = .011,

d = 0.22, CI[0.68, 5.09]), evidence of a small left digit effect (57% of

participants had scores >0). The effect size was larger than in Experi-

ment 1 (d = 0.19) but smaller than Experiment 2 (d = 0.30). There

were no gender differences in scores (t(141) = −1.10, SE = 2.26,

p = .272).

8.2.2 | NLE task and relationship between tasks

After outliers were removed (M = 3.84% of trials), PAE was 3.63%

(SD = 1.17; range = 1.46–7.29), similar to Experiments 1 and 2. Across

participants, the hundreds difference score had a M = 31.50

(SD = 16.18, range = −27.13–72.50) and was significantly greater than

0 (t(142) = 23.28, SE = 1.35, p < .001, d = 1.95, CI[28.83, 34.18]), evi-

dence of a large left digit effect (93% of participants had scores > 0).

There were no gender differences (t(141) = −0.18, SE = 2.75,

p = .647). As in Experiments 1 and 2, no reliable relationship was

found between left digit effect measures, r(141) = .04, p = .605, or

between the judgment difference score and PAE, r(141) = .16,

p = .063, although the latter approached statistical significance.

8.3 | Discussion

Experiment 3 replicates the pattern of college admissions ratings

found in Experiment 2 that contributed to a left digit effect: Portfolios

with the high boundary values were given much higher ratings than

those with the low boundary values, while portfolios with high non-

boundary values were rated as only slightly higher than those with

low non-boundary values. Further, Experiment 3 provides evidence

that the left digit effect is not specific to a particular response format:

the pattern emerged here with the use of a numerical response scale

instead of the previously used sliding response scale. The effect size

was smaller here than in Experiment 2, perhaps due to the change in

response format (and participants gave higher ratings overall). How-

ever, given unexpected changes across studies in the in-person versus

remote procedure for some participants, we do not draw conclusions

about the smaller effect size. Consistent with Experiments 1 and 2, this

study provides no evidence of a relationship between the magnitude

of one's left digit effect in the college admissions and NLE tasks.

9 | COMBINED DATA: MODEL OF
CANDIDATE RATINGS

In exploratory analyses using the data across all three experiments

(N = 434), we considered whether participants, as instructed, weighed

the portfolio dimensions equally in assigning ratings to candidates, as

emergence of a left digit effect at the individual level depends on use

of SAT scores to form one's judgments. Toward addressing this ques-

tion, we ran a linear regression to predict candidate ratings using the

five portfolio dimensions. For each participant, we obtained a stan-

dardized beta (β) value for each dimension. Averaged across the three

studies, the β values were as follows: GPA (M = 0.42, SD = 0.17), let-

ters of recommendation (M = 0.13, SD = 0.14), essay (M = 0.13,

SD = 0.16), SAT verbal (M = 0.22, SD = 0.20), and SAT math

(M = 0.22, SD = 0.16). The greatest weight was given to GPA,

followed by SAT verbal and SAT math scores. The model (including a

constant) explained an average of 91% of variance in ratings (ran-

ge = 43%–100%, except for one participant with R2 of 1%). There was

no relationship between the judgment difference score and SAT ver-

bal β value, SAT math β value, or R2 (jrjs < .07, ps > .199), evidence

that differences in weighting of SAT scores in the college admissions

task did not modulate the size of the observed left digit effect. Fur-

ther, controlling for these variables did not change the relationship

between the judgment difference score and the hundreds difference

score (r ≈ −.03 across all three experiments).

With the larger data set, we also asked whether an individual's R2

for the college admissions task could be predicted from either of the

NLE measures. The R2 is not a measure of the left digit effect, but it

F IGURE 5 Effects of boundary type and relative magnitude of
SAT verbal and math scores on ratings of strength of admissions
applicant portfolios using a numerical scale (Experiment 3). Note:
Analysis of the judgment difference score (see Section 8.2) reveals
that the high boundary minus the low boundary rating is greater than
the high non-boundary minus the low non-boundary rating (p < .05).
Error bars indicate 1 unit of SE in each direction
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does reflect consistency in one's use of attributes to inform one's rat-

ings across trials and, as such, it may be higher for those with stronger

number skills. In fact, we found that the R2 value for the college

admissions task was correlated with hundreds difference score

(r(432) = −.12, p = .017) and PAE (r (432) = −.12, p = .013). Although

the correlations are small, they do suggest that individuals with better

numerical magnitude estimation might also use attributes more con-

sistently in their judgments.

10 | GENERAL DISCUSSION

There are two key findings. The first finding is that we found a small

but statistically significant left digit effect in the college admissions

task: Matched candidates were rated as more different from one

another when SAT scores had different leftmost digits. That the size

of the effect increased when we manipulated two instead of just one

SAT score is further evidence that an overreliance on the leftmost

digits of SAT scores was driving the portfolio ratings. The effect was

also found using two different types of response scales and thus does

not appear to be specific to a particular response format. These find-

ings add to existing evidence of a left digit effect in judgment and

decision-making contexts (e.g., Thomas & Morwitz, 2005) and extend

the effect—which is most often studied using consumer prices—to the

use of standardized test scores. This is important given that many past

studies have used values for which there might also be domain-

specific strategies, such as the truncating of cents in the context of

prices (MacKillop et al., 2014), or the days or weeks beyond one's

most recent birthday (i.e., 78 and 50 weeks is still commonly “78 years

old”; Olenski et al., 2020). The present studies also provide laboratory

evidence of bias not just during single-value judgments but also when

one must integrate multiple relevant values into an overall assess-

ment, consistent with other types of studies that use existing records

to infer a left-digit bias in decision making.

The second key finding is that even though there were large

individual-level variations in the left digit effect in the judgment and

decision-making task and the basic numerical magnitude estimation

task used here, the size of one's left digit effect was not reliably corre-

lated across tasks. Such a correlation would have provided evidence

that the NLE task might be used both to predict the size of one's left

digit effect across a range of judgment tasks and might be used as a

debiasing technique to train reductions in the left digit bias across

tasks. It also would have provided evidence of a common underlying

mechanism across tasks, supporting the possibility that more complex

judgments arise from more basic processes of numerical cognition.

While the present findings do not rule out these possibilities, they

raise several questions that should be considered in future work.

One question raised is whether variation in the size of the left

digit effect in the NLE task in fact reflects a stable individual differ-

ence. It is possible that variations in performance do not reflect stable

individual differences. We do know that test–retest reliability is about

r = .45 for number line accuracy (e.g., PAE; Schneider et al., 2018), but

such reliability has not yet been established for the hundreds

difference score in this task. An important next step will be to study

the test–retest reliability for the hundreds difference score toward

providing evidence of consistency in scores over time. Because the

judgment difference score used here for the college admissions task

was based on a small number of trials, it might also be valuable to

develop a modified judgment task that includes a greater number of

critical trials, to ensure a robust measure of left-digit bias in this con-

text (see Aczel et al., 2015; McElroy & Dowd, 2007;

Teovanovi�c, 2019, for individual differences in judgment heuristics).

Despite these limitations, we do know that measures of the left digit

effect have in the past been related to individual difference measures

such as thinking style (using a single-item price comparison task; Tu &

Pullig, 2018) and verbal standardized test achievement (Williams, Paul,

et al., 2020), and even to consistency in use of attributes in the college

admissions task here, suggesting that they do likely capture some sta-

ble variation in task performance related to number cognition.

A second question raised is whether the NLE task and the college

admissions tasks draw on a large number of skills that are not shared

across tasks, perhaps obscuring any common source of variance in

performance. For example, in the NLE task, overall accuracy has been

shown to depend not only on numerical magnitude estimation but

also on spatial skills and strategies including proportional reasoning

(Cohen & Blanc-Goldhammer, 2011; Slusser & Barth, 2017; Sullivan

et al., 2011). Where a target is placed on the number line depends in

part on whether one uses the midpoint and other reference points on

the number line to guide responses (Peeters et al., 2017). In judgment

tasks such as the college admissions task, individuals likely differ in

how they approach the task, specifically, in whether they adopt a

more intuitive or deliberative strategy for integrating dimensional

information into a single assessment of each portfolio (Payne

et al., 2008; Usher et al., 2011). Individuals may also engage higher

order types of reasoning about numbers, such as associating .99 on a

consumer price with the presence of a discount or sale (Gabor, 1977;

Gabor & Granger, 1964). Although we used a similar response scale in

both the numerical estimation and college admissions tasks

(in Experiments 1 and 2), future work might involve use of tasks that

are even more closely aligned, while still contrasting the activity of

estimating the location of a target number on a response line with

judging its cost, quality, strength, and so forth. This approach could

suggest what degree of similarity is needed for left-digit measures to

converge.

Recall that several researchers have proposed that the left digit

effect in judgment and decision making might be explained by cogni-

tive processes associated with numerical magnitude estimation

(Huber et al., 2016; Macizo & Ojedo, 2018; Thomas & Morwitz, 2005,

2009). The present findings do not rule out this possibility, and the

recent finding of the left digit effect in NLE (Lai et al., 2018) supports

it. It remains likely that theories of numerical magnitude estimation

will ultimately at least partially explain the left digit effect in judgment

and decision making. According to one compelling recent model of

number to quantity conversion (Dotan & Dehaene, 2020), each digit

in a numeral (that is read) is first bound to a syntactic role

(e.g., hundreds place and tens place) and then is weighted according
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to its role. Digit-based quantities are then integrated into a whole-

number quantity. According to this model, one has access to weighted

digit-based magnitudes that might be used when task relevant, but

the model also assumes rapid construction of whole-number esti-

mates. This model may be a promising candidate for understanding

the left digit effect in NLE, in that the effect could easily be explained

as an overweighting of leftmost digits during the integration process.

What still would need to be explained is, to the extent there is

variation in the overweighting of the leftmost digit during the integra-

tion process, why might this be the case? The starting point of the pre-

sent work was an assumption that appropriate weighting and

integration of digit magnitudes may reflect a learned skill and thus that

individuals with stronger magnitude estimation skills might, for

example, have better calibration in their weighting of digits across

tasks. This is still possible, but the present findings do not lend new

support to this possibility. An alternative possibility is that over-

weighting of the leftmost digit might reflect across-trial fluctuations in

attention, motivation, or response speed. Overweighting might also

vary as a function of what magnitudes have been recently activated

(e.g., in prior trials) or are being evaluated concurrently. Such

possibilities would offer another explanation as to why the left digit

effect was not related across tasks here, even if the underlying mecha-

nism of overweighting the leftmost digit during integration is shared

across tasks.

NLE accuracy has been used to predict performance on stan-

dardized math achievement tests (Booth & Siegler, 2008; Hoffmann

et al., 2013; Holloway & Ansari, 2009; Schneider et al., 2009,

2018) and adults' numeracy (Peters & Bjalkebring, 2015; Schley &

Peters, 2014), and the NLE task has been used as a training tool

to improve numerical skills in children (Schneider et al., 2018).

Recent research has been aimed at understanding whether the

left-digit bias in NLE might similarly predict other types of perfor-

mance and whether it might also be improved through NLE

training. Ongoing work in our lab, for example, explores the devel-

opmental trajectory of the left digit effect (Williams, Zax,

et al., 2020) and whether it is possible to reduce the left digit

effect through feedback interventions with adults (Williams, Xing,

et al., 2020). Although the present findings suggest some caution

when considering some of these possibilities with regard to the left

digit effect, it will be important to explore the issues further, as

they have implications for identifying and reducing judgment bias

in decision making in contexts ranging from consumer purchases to

health behavior and medicine.
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ENDNOTES
1 Four additional participants completed the study but, after outlier

removal, were missing > 3 pairs of hundreds difference scores. Per

preregistered exclusion criteria, they are not included in this report.
2 Tasks were administered in this order because the NLE task was a much

longer task than the admissions rating task (120 trials vs. 20 trials,

respectively). Our assessment was that the NLE task would be more

likely to influence performance on the rating task (as the latter was less

transparently about magnitude estimation) than the reverse.
3 The formal name of the verbal section of the SAT is “Evidence Based

Reading and Writing.”
4 That the first block of NLE trials was part of another study had no

impact on the present study's design. The first block of NLE trials was a

standard 120 trials administered to all participants. It was not until a sec-

ond block of trials (not reported here) that a feedback manipulation was

introduced in which half of participants were given feedback on their

performance after each set of 20 trials while the other half of partici-

pants were not.
5 Four additional participants completed the study but, after outlier

removal, were missing > 3 pairs of hundreds difference scores, and so

are not included in this report.
6 Four additional participants completed the study but, after outlier

removal, were missing > 3 pairs of hundreds difference scores, and so

are not included in this report; two further participants were excluded

for misunderstanding the college admissions task instructions (one gave

0–10 ratings, and the other gave 0–1000 ratings).
7 The 2020 coronavirus pandemic began during the running of the study.
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