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Modeling the left digit effect in adult number line estimation 
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A B S T R A C T   

Number line estimation tasks are frequently used to study numerical cognition skills. In a typical version, the 
bounded number line task, target numerals must be placed on a bounded line labeled only at its endpoints 
(e.g., with 0 and 100). Placements by adults, while highly accurate, reveal a cyclical pattern of over- and 
underestimation of target numerals. The pattern suggests use of proportion judgment strategies and is well- 
captured by cyclical power models. Another systematic number line bias that has recently been observed, 
but has not yet been considered in modeling efforts, is the left digit effect. Numerals with different leftmost 
digits (e.g., 39 and 41) are placed farther apart on a line than is warranted. In the current study (N = 60), adult 
estimates were obtained for all numerals on a 0–100 number line estimation task, and fit of the standard 
cyclical power model was compared with two modified versions of the model. One modified version included a 
parameter that underweights the rightward digit’s place value (e.g., the ones digit here), and the other used the 
same parameter to underweight all digits’ place values. We found that both modifications provided a 
considerably better fit for individual and median data than the standard model, and we discuss their relative 
merits and cognitive interpretations. The data and models suggest how a left digit bias might impact estimates 
across the number line.   

1. Introduction 

Understanding numerical quantities is an important cognitive skill. A 
tool frequently used to study, assess, and train numerical magnitude 
estimation skill is the number line estimation task (e.g., Barth & Paladino, 
2011; Booth & Siegler, 2008; Brez, Miller, & Ramirez, 2016; Hamdan & 
Gunderson, 2017; Schneider et al., 2018; Siegler & Opfer, 2003; Siegler 
& Ramani, 2009; Slusser, Santiago, & Barth, 2013; Xing et al., 2021; 
Zhu, Cai, & Leung, 2017). A typical version, called the bounded number 
line task, involves estimating the locations of target numerals (e.g., ‘82’) 
on a horizontal line labeled only at its endpoints (e.g., with 0 and 100; 
see Fig. 1).1 The task is one of proportion judgment in that it involves 
judging the location of a numeral relative to bounding reference points 
(e.g., 25 is a quarter of the way between 0 and 100; e.g., Barth & Pal
adino, 2011; Cohen & Blanc-Goldhammer, 2011; but see Siegler & 
Opfer, 2003). A central measure of task performance is overall accuracy 
error, which captures the mean absolute difference between one’s 

placements and correct locations (and is often expressed as a percentage 
of the total range), and is used to assess individual differences in nu
merical estimation skills. Overall accuracy error has been linked to many 
measures of numerical competence, including math achievement test 
scores in children (e.g., Booth & Siegler, 2008; Holloway & Ansari, 
2009; Schneider, Grabner, & Paetsch, 2009; Tosto et al., 2017; see 
Schneider et al., 2018, for review) and decision-related number skills in 
adults (Patalano et al., 2020; Peters & Bjalkebring, 2015; Schley & Pe
ters, 2014). 

Already well documented is a cyclical pattern of placement error in 
number line estimation, illustrated in its simplest form (a one-cycle 
curve) in Fig. 3a. This pattern, which is found in a wide range of tasks 
involving proportion judgment (see Hollands & Dyre, 2000; Zhang & 
Maloney, 2012), has been successfully modeled using Hollands and 
Dyre’s cyclical power model. The model builds on Stevens’ Law (Stevens, 
1957) which describes the relationship between the estimated magni
tude of a physical stimulus (e.g., brightness) and its actual magnitude as 
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a power function y = xβ, where β quantifies the bias in estimates (the 
curve is concave when β < 1 and convex when β > 1).2Spence (1990) 
extended Stevens’ Law to proportion judgments by showing that when 
there are two bounding reference points, estimates are predicted by y =
xβ/(xβ + (1 − x)β), with β determining the magnitude and direction of 
the bias (S-shaped when β < 1 and an inverse S-shaped when β > 1). 
Hollands and Dyre (2000) generalized the model to also explain a range 
of other patterns, such as multi-cyclical ones (e.g., Fig. 3d), that arise 
from use of additional reference points during proportion judgment. 

The cyclical power model, although developed in the context of 
physical stimuli rather than numerical magnitudes, was successfully 
extended by Barth and Paladino (2011) and Cohen and Blanc- 
Goldhammer (2011) to the number line estimation task. In this 
context, the bias observed and reflected by β is thought to arise from 
imprecision in estimates of magnitude from numerals (e.g., Dehaene, 
Izard, Spelke, & Pica, 2008; Siegler & Opfer, 2003) and also from skill in 
judging part-whole relationships (e.g., 59 as a proportion of 100; Barth 
& Paladino, 2011; Cohen & Blanc-Goldhammer, 2011; Cohen, Blanc- 
Goldhammer, & Quinlan, 2018; Slusser et al., 2013). The observed 
pattern of bias is sometimes one cycle and sometimes multi-cyclical, 
with the number of cycles thought to depend on how many additional 
reference points, besides the labeled endpoints, are used to perform the 
task (e.g., also using the line’s midpoint; Peeters, Sekeris, Verschaffel, & 
Luwel, 2017; Slusser et al., 2013; Sullivan, Juhasz, Slattery, & Barth, 
2011; Zax, Slusser, & Barth, 2019). An individual’s placements are 
typically well fit by either a one-cycle curve (more often inverse S-sha
ped as in Fig. 3a) or a two-cycle curve (more often S-shaped as in Fig. 3d; 
Cohen & Blanc-Goldhammer, 2011; Patalano, Saltiel, Machlin, & Barth, 
2015; Slusser & Barth, 2017). While theoretical issues remain (e.g., why 
the pattern is S-shaped versus inverse S-shaped across individuals), the 
cyclical bias pattern itself is well-established in this context. 

The cyclical power model (like other models that attempt to account 
for number line placements) does not, however, explain a more recently 
discovered bias in placements that is of a different nature. With the 
cyclical power model, target numerals like 79 and 81 are predicted to be 
placed in similar locations on a 0–100 number line because the two 
numerals have similar overall magnitudes. Recent work, however, has 
revealed that the individual digits that comprise the numerals are also 
importantly related to where the targets are placed on the line, beyond 
their contribution to overall magnitude. Specifically, what Lai, Zax, and 
Barth (2018) found using a 0–1000 number range was a left digit effect, 
whereby numerals with similar overall magnitudes but distinct leftmost 
digits (e.g., 299/301) were placed farther apart than is warranted. They 
found that this pattern did not occur with numerals that have distinct 
middle digits (e.g., 248/252), suggesting that the bias is driven by the 
leftmost digit. In studies such as Lai et al., targets are shown individually 
and in random order; pairing is for data analysis only. This left digit 

effect is robust and has been replicated using multiple numerical ranges 
(including 0–100 and 0–1000 ranges; Savelkouls, Williams, & Barth, 
2020; Williams, Zax, Patalano, & Barth, 2022), a reverse number line (e. 
g., 1000–0; Williams, Bradley, Xing, Barth, & Patalano, 2022), a speeded 
task (Lai et al., 2018; Williams, Paul, Zax, Barth, & Patalano, 2020); and 
motivational incentives to perform as accurately as possible (Kayton 
et al., 2022). 

To date, explorations of left digit effects in number line estimation 
have focused on a particular method of indexing these effects: showing 
that numerals such as 299/301 or 79/81 are on average placed in loca
tions that are farther apart than is warranted. This method does not imply 
that left digit effects only exist for paired numerals that fall in the vicinity 
of either side of decades or hundreds boundaries. However, previous 
studies’ focus on the vicinity of these boundaries does leave open the 
question: does the effect arise only when paired targets are only a few 
units away from left digit boundaries (e.g., 49/51, with a 0–100 range), or 
are more distant targets (e.g., 45/55) also placed farther apart than is 
warranted? Other aspects of left digit effects are also not well understood. 
For example, one might ask whether below-boundary values are placed 
farther to the left than warranted and above-boundary values farther to 
the right, or something else? Lai et al. (2018) did not formally test these 
possibilities, but their data visualizations suggest the former. Exploratory 
work by Kayton et al. (2022) goes further, offering a clue to how the left 
digit effect might arise from placements: it was observed that targets just 
above a boundary were on average placed nearly in the correct location 
(in fact, slightly too far to the left), while those just below a boundary 
were placed considerably farther to the left than warranted, suggesting 
that it might be the placements of below-boundary values driving the 
effect. This exploratory finding suggests a possible pattern of bias 
whereby, within each left digit range (10s, 20s, etc. for the 0–100 overall 
range), the placements of some or all targets are compressed farther to the 
left (closer to the placement of the lower boundary of the range) than is 
warranted. For example, on the 0–100 number line, some or all targets 
between 21 and 29 might be placed closer to where 20 is placed, and thus 
farther from where 30 is placed than is warranted (regardless of whether 
20 and 30 themselves are placed accurately), with the pattern repeating in 
each tens range. 

Because past studies have largely used only subsets of target nu
merals from the number range under study (e.g., 38 numerals from the 
0–1000 range; Lai et al., 2018), past data cannot be easily used for 
modeling small-scale changes in placement error (across neighboring 
numerals). In the present study, we administer a 0–100 number line 
estimation task in which target numerals consist of all numerals in the 
range with the goal of better understanding the left digit effect. We use 
the collected data: (1) to replicate the phenomenon of the left digit effect 
on a 0–100 number line for target pairs used in past work; (2) to expand 
the analysis in order to further characterize the effect; and (3) to develop 
and test several modified versions of the cyclical power model that 
incorporate the proposed downward compression of placements within 
each tens range. 

Fig. 1. Schematic of number line estimation display (a) before and (b) after response. 
Note. Participants clicked on the horizontal line to estimate the location of the target number. The vertical placement line in the second image was red in color. 

2 A scaling parameter was also included in the original model. 
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2. Method 

2.1. Participants and procedure 

Participants were 60 adults (44 women, 16 men) who were recruited 
from Prolific Academic and completed the study online for small mon
etary compensation. Their ages ranged from 18 to 60 (M = 25.9). All 
participants completed, at their own pace, a total of 101 trials of a 0–100 
bounded number line task. The trials consisted of all numerals from 0 to 
100 (presented once each) in a different randomized order for each 
participant. Exclusion criteria, central inferential statistics, and mathe
matical models and model testing procedures were preregistered (http 
s://aspredicted.org/4sz6s.pdf) unless otherwise noted. 

2.2. Number line estimation task 

2.2.1. Task description 
The program was designed using lab.js software (lab.js. org; Hen

ninger, Shevchenko, Mertens, Kieslich, & Hilbig, 2019) and distributed 
through Open Lab (Shevchenko, 2022). Participants completed a screen 
calibration task at the outset to ensure a consistent display size across 
computers (see Li, Joo, Yeatman, & Reinecke, 2020). On each trial of the 
number line task, participants were presented with a target numeral (e. 
g., 22; 1 cm tall) in the center of the screen, 4 cm above a black hori
zontal line (20 cm long) (see Fig. 1a). The horizontal line had two ver
tical lines as endpoints (1.1 cm long). The endpoints were labeled with 
0 and 100 (each 0.8 cm tall). When participants selected the location of 
the target numeral with a mouse click, a vertical red line appeared (0.8 
cm long) as show in Fig. 1b. A “Next” button then appeared that could be 
clicked to go on to the next trial. Participants were instructed to give 
their number line responses as quickly and accurately as possible. The 
click location was recorded as a number on the line to the nearest tenth 
of a unit (e.g., 45.7). 

3. Results 

3.1. Exclusions 

In addition to being preregistered, all exclusion criteria were as in Lai 
et al. (2018) and Patalano, Williams, Weeks, Kayton, and Barth (2022). 
A participant’s estimate for a target number was identified as an outlier 
for all analyses, except computation of overall accuracy error, if it 
differed from the group mean for that target by more than two standard 
deviations (4.09% of trials were removed). One participant with more 
than three tens pairs missing (as described in Section 3.3) due to outlier 
removal was excluded from all analyses. We also preregistered 
excluding any participant not completing the task or for whom the 
correlation between placements and target values was r < 0.5, but there 
were none. A total of 59 participants (out of the original 60) were in the 
final dataset. 

3.2. Percent absolute error 

To check that performance on the task was similar to what has been 
found in past work, we computed a common measure of overall accuracy 
error called percent absolute error = (|target placement – correct target 
location|/100) x 100), summed over relevant trials. We found that 
percent absolute error was low (M = 3.81%, SD = 1.03, range =
1.99–6.54), comparable to what has been found in past studies of adults 
in 0–100 number line tasks (e.g., 3.60% using all trials; Williams, Zax 
et al., 2022). In exploratory analyses, we also calculated percent abso
lute error using two subsets of trials: one version used the half of trials 
closest to tens boundaries (0–2, 8–12, 18–22 through 98–100) and the 
other used the half farthest from tens boundaries (3–7, 13–17, 23–27 
through 93–97). We computed these because the question often arises as 
to the extent to which percent absolute error varies as a function of 

whether boundary trials are heavily represented in the stimulus set. If 
targets near boundaries are most susceptible to a left digit bias, one 
might predict error to be greater when there are more of these targets in 
the set. We found that percent absolute error for targets near boundaries 
(M = 3.60%) was actually lower than for targets far from boundaries (M 
= 4.03%; t(58) = 5.15, p < .001, d = 0.67), but that the direction 
reversed when targets around reference points on the line (targets 0–2, 
48–52, and 98–100, which are straightforward to place accurately) were 
excluded. In the latter case, percent absolute error was higher for targets 
near boundaries (M = 4.35%) than for targets far from boundaries (M =
4.03%; t(58) = − 3.43, p = .001, d = 0.45), with a medium effect size. 
The finding suggests that target selection matters in that overall accu
racy error is low near reference points, but is otherwise higher for targets 
close to (versus far from) tens boundaries. 

3.3. Average tens difference scores 

We next computed a standard measure of the left digit effect for two- 
digit targets called the average tens difference score. The target values we 
used to compute the measure were the same as those used in past adult 
studies with a 0–100 range, even though the present study design allows 
for other possibilities as well. There were eight pairs of values (paired for 
the purposes of data analysis only: 18/22, 29/31, 38/42, 49/51, 59/61, 
69/71, 78/82, 88/92; Vaidya et al., 2022, Williams, Zax et al., 2022). 
Following past work, we computed the average tens difference score =
((larger target placement – smaller target placement) – (correct larger target 
location – correct smaller target location)), averaged over all of the tens 
pairs. An average tens difference score above 0 is interpreted as evidence 
for a left digit effect, because the difference is greater than what would 
be expected based on the magnitudes of the numbers alone. 

As expected, the average tens difference score (M = 0.76, SD = 1.87, 
range = − 3.96–5.68) was significantly different from (greater than) 0, t 
(58) = 3.11, p = .003, two-tailed, d = 0.41, consistent with a left digit 
effect. The magnitude of the tens difference score was within the range 
of means reported in past work (Ms = 0.74–1.67; Vaidya et al., 2022; 
Williams, Zax et al., 2022), and was in the predicted direction for 6 out 
of 8 pairs (all except 18/22 and 59/61; see Fig. 2a), and 36 out of the 59 
participants (61%; binomial test, p = .118, two-tailed). The number of 
participants showing the expected pattern was close to the ~70% seen in 
past work with the 0–100 number line (e.g., Williams, Zax et al., 2022), 
and lower than the ~85% seen with the 0–1000 number line (e.g., 
Patalano et al., 2022; Williams et al., 2020). We suspect most people are 
susceptible to the bias, but that the effect is smaller and more often 
obscured by other sources of error at the individual level, with the 0–100 
scale. However, see Williams et al. (2020) for a discussion of possible 
individual differences in the left digit effect as well. 

To demonstrate that a difference score >0 is specific to numbers that 
cross a left digit boundary, and that it does not also arise for other pairs 
of numbers, we also computed an average fives difference score for eight 
pairs of two-digit values that cross a fives boundary (13/17, 24/26, 33/ 
37, 44/46, 54/56, 64/66, 73/77, 83/87) that we matched to the tens 
pairs on distances between values in each pair.3 In this case, we would 
not expect the five difference score to be >0 since the pairs do not cross a 
left digit boundary. If anything, we would expect it to be <0 because the 
placements might be spaced too close together (more compressed as one 
moves towards the lower end of the tens range). We found that the 
average fives difference score was in fact significantly <0 (M = − 0.84, 
SD = 2.10, range = − 5.58–3.06; t(58) = − 3.07, p = .003, two-tailed, d =
0.41), showing no evidence of a left digit effect. This pattern extended to 
7 out of 8 pairs (all except 44/46; see Fig. 2b) and to 38 out of 59 

3 We report the findings using the eight pairs surrounding boundaries from 15 
to 85 but the results would not change if we were to instead use the eight 
boundaries from 25 to 95 (i.e., the ones above rather than below each tens 
pair). 
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participants (64%; binomial test, p = .036, two tailed). This finding 
shows that the tens difference score >0 cannot be explained by a more 
global pattern of bias (such as the known S-shaped curve) because, if the 
latter were true, one would expect the pattern to extend to the fives 
difference score as well. The fives difference score pattern seen here is 
consistent with the proposed downward compression of placements 
within a tens range in that it shows that pairs around fives boundaries 
are, in fact, placed closer together than is warranted. 

One question presented in the introduction was that of whether the 
tens difference score is reliably >0 only for targets close to the tens 
boundary or if it extends to other pairs that cross such a boundary (e.g., 
52 and 68 cross the boundary of 60 but are rather far from it). This is also 
partly a methodological question: Can any pairs that cross a left digit 
boundary be used to assess the left digit effect? To address this question, 
we computed average tens difference scores for symmetrical pairs at 
various distances from the tens boundaries (with each target being from 
one unit away to nine units away; e.g., 59/61, 58/62, through 51/69), as 
shown in Table 1. What can be seen is that the tens differences scores are 
reliably >0 for all pairs through those with five-ending targets (e.g., 55/ 
65) and then the effect is no longer present after that point (e.g., it is not 
present for targets such as 54/66). This pattern suggests that the effect 
may extend to targets that are within about five units from the bound
ary. The finding is important in practice for informing stimulus selection 
when designing studies. 

The analyses so far illustrate where the left digit effect emerges but 
do not yet speak to whether it is driven to a greater extent by above- 
boundary or below-boundary placements. For example, is the tens dif
ference score for 59/61 driven by the difference in placements between 
59 and 60, between 60 and 61, or both? To address this question, in 
Table 1, we broke down each tens difference score into lower and upper 
components. For example, for 59/61, we computed a lower difference 
score for 59/60 as (placement of 60 – placement of 59) – (correct location 
of 60 – correct location of 59) and an upper distance score for 60/61 as 
(placement of 61 – placement of 60) – (correct location of 61 – correct 
location of 60). If the left digit effect is in fact driven by the placement 
distance for 59 and 60 rather than for 60 and 61 (i.e., if it is driven by 
numerals with different leftmost digits), lower tens difference scores 

should be >0, but this should not be the case for upper difference scores. 
This is the pattern that we observed. As shown in Table 1, lower tens 
difference scores were all reliably >0, while upper tens difference score 
were all reliably <0 (both patterns consistent with compression of 
placements within a tens range towards the left on the number line). A 
left digit effect emerged (a tens difference score reliability >0) whenever 
the lower (positive) difference score was much greater in absolute 
magnitude than the upper (negative) difference score. 

3.4. Modeling of placement data 

To model placement data, we used standard one-cycle and two-cycle 
versions of the cyclical power model, and we tested two different types 
of modifications to accommodate the left digit effect. The first type of 
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Fig. 2. (a) Average tens difference scores and (b) average fives difference scores by target pair. 
*p < .05, two-tailed, positive direction; ^p < .05, two-tailed, negative direction. Note. Bars reflect 95% confidence intervals. Tens difference scores were in the 
predicted direction (>0) for 6/8 pairs, consistent with a left digit effect. Fives difference scores were in the reverse direction (<0) for 7/8 pairs, evidence that the left 
digit effect does not extend to fives pairs. 

Table 1 
Average tens difference scores (and upper and lower components) as a function 
of distance between paired targets.  

Distance (units 
per direction) 

Example Tens 
difference 
score 

Lower 
difference 
score 

Upper 
difference 
score  

(e.g. 59/61) (e.g. 59/60) (e.g. 60/61) 

1 59/61 0.99* 1.73* − 0.84^ 

2 58/62 1.07* 2.14* − 1.09^ 

3 57/63 0.82* 2.35* − 1.33^ 

4 56/64 0.83* 2.33* − 1.53^ 

5 55/65 0.47* 1.95* − 1.67^ 

6 54/66 − 0.10 1.94* − 2.18^ 

7 53/67 − 0.30 1.48* − 1.73^ 

8 52/68 − 0.24 1.49* − 1.82^ 

9 51/69 − 0.16 0.99* − 0.87^ 

Note. The averages includes all pairs around each of nine tens boundaries (pairs 
around 60 are just one example). The table shows a left digit effect for distances 
of up to five units in each direction (e.g., 55/65), arising when positive lower 
difference scores that are not fully offset by negative upper ones. 

*p < .005, two-tailed, positive direction. 
^p < .005, two-tailed, negative direction. 
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new model that we developed (all new models have both one and two- 
cycle versions) is referred to as the modified (cyclical power) model. This 
model is different from the standard model in that we added a trans
formation of the rightmost digit of a numeral to accommodate the left 
digit effect. A power function for the transformation was preregistered 
(this is the power-modified version of the model), and we also tested a 
multiplier function (the multiplier-modified version of the model) after 
evaluation of the data. We then also developed and tested a second type 
of model called an expanded (cyclical power) model. This model is 
different from the modified model in that we extended the digit trans
formation from just the rightmost digit to all digits that comprise a nu
meral. We used only the power function (and thus also refer to the model 
as a power-expanded model) for the transformation because the power 
function is more strongly motivated in this context, as will be described 
later. Note that while tables and graphs show findings for all models 
together, in the text we first describe and present findings for the 
modified model, and then we describe and present findings for the 
expanded model, consistent with the manner in which we developed 
these models. 

3.4.1. Descriptions of standard and modified cyclical power models 
Recall that the standard cyclical power model was previously 

developed (Hollands & Dyre, 2000) and used to capture the global 
cyclical pattern shown in Fig. 3a and d. The standard (unmodified) 
cyclical power equations are shown first below, where y = predicted 
target placement, x = target value, β = index of curvature, UB = upper 
boundary, and LB = lower boundary (starting value was β = 1): 

One − cycle : y =
(
(x–LB)β

/(
(x–LB)β

+(UB–x)β
))

• 100  

where β > 0; LB = 0, UB = 100  

Two − cycle : y =
(
(x–LB)β

/(
(x–LB)β

+(UB–x)β
)
• 0.5

)
• 100+LB  

where β > 0; for 0 ≤ x ≤ 50, LB = 0, UB = 50; for 50 < x

≤ 100, LB = 0, UB = 50 

For the modified version of the one-cycle and two-cycle model, we 
made two changes. First, the target value, rather than being represented 
by x, now has separate input for its tens place value (xt) and its ones 
place value (xo). For example, 25 would be input as xt = 20 plus xo = 5. 
Second, we added a function f(xo) that allows for an underweighting of 
the ones place value before it is added to the tens place value, resulting 
in lower placements of targets within each tens range. The below 
equations show the function written generically as f(xo); we follow these 
equations with the two specific functions that we used in the present 
work. 

One − cycle modified : y =
(
((xt + f (xo) )–LB )

β
/(

((xt + f (xo) )–LB )
β

+(UB–(xt + f (xo) ) )
β
))

• 100  

Two − cycle modified : y =
(
((xt + f (xo) )–LB )

β
/(

((xt + f (xo) )–LB )
β

+(UB–(xt + f (xo) ) )
β
)
• 0.5

)
• 100+LB 

Given no strong prediction about the precise form of the under
weighting, we tested the models using a power function and again using 
a multiplier function (starting value was δ = 1). We treated the 
parameter as essentially means of weighting the relative contribution of 
the ones digit to the overall magnitude of the multidigit numeral, 
consistent with frequent description of the left digit effect as arising from 
the weighting of digits during the conversion of numerical symbols to 
magnitudes (e.g., Thomas & Morwitz, 2005). 

Power function : f (xo) = xo
δ  

Multiplier function : f (xo) = δxo 

If the exponent δ were set to 1 in these functions, the modified 
cyclical models would be identical to the standard model. However 
when δ < 1, the ones value of the target contributes less than it should to 
the target’s overall magnitude, resulting in lower placements of targets 
within a tens range. Only the predicted placements of tens boundary 
targets (like 10, 20, 30) do not change in the modified models relative to 
the standard ones because, when the input is 0, f(xo) returns 0. The 
overall result is compression of placements within each tens range to
wards placement of the lower boundary and away from the upper 
boundary (e.g., placing 25 closer to 20 and farther from 30), as illus
trated in Fig. 3b and e for the multiplier-modified model. The power and 
multiplier functions are similar except that the former predicts greater 
downward compression. Note that while we did not formally set δ ≤ 1, 
we assume that people typically do not treat the magnitude of any nu
meral between 0 and 100 as greater than that of the next larger numeral 
(e.g., that 99 is not treated as larger than 100). Because this assumption 
is sometimes violated when δ > 1, we expect δ to be ~1 when there is no 
left digit effect, otherwise <1. 

3.4.2. Fitting of standard and modified cyclical power models to data 
To model placement data using the described models, we first 

assigned each participant to a one-cycle group or a two-cycle group 
based on which standard cyclical power model better fit their responses 
(i.e., which produced a lower Bayesian Information Criterion, or BIC, 
score for that individual).4 We used this approach because the purpose 
of the work was not to compare fit of these versions of the model (that is, 
we assumed that some participants would be better fit by a one-cycle 
version, and some by the two-cycle version, depending on their task 
strategy). Rather, the goal was to assess whether people who use each 
strategy are better fit by the standard model versus the corresponding 
modified model. Further, by grouping participants from the outset, we 
were able to compare models based on their fit to median responses 
knowing that the individuals used to compute the medians would be the 
same across models (e.g., the one-cycle standard and modified models 
would be tested using the same median responses). What we found was 
that more participants were better fit by a standard one-cycle model (n 
= 42) than by a two-cycle model (n = 17), consistent with past work (e. 
g., Cohen & Blanc-Goldhammer, 2011; Patalano et al., 2020; but see 
Slusser & Barth, 2017, for a reverse pattern in a very large number 
range), and all participants were better fit by these models than by a 
simple identity model. 

Within the one-cycle and two-cycle groups separately, we then fit 
modified models to individual participants’ data (which we had already 
done for the standard model), and also fit both standard and modified 
models to median placements. As shown in Table 1, both the power and 
multiplier versions of the modified model fit considerably better than 
the standard model, with the multiplier-modified version fitting some
what better than the power-modified one. For the one-cycle group, for 
the multiplier-modified model fit to median placements, ΔBIC was 81 
relative to the standard model, and 83% of participants were individu
ally better fit by the multiplier-modified model than by the standard 
model. Similarly, but to a lesser degree, for the two-cycle group, for the 
multiplier-modified model fit to median placements, ΔBIC was 36 
relative to the standard model, and 76% of participants were individu
ally better fit by the multiplier-modified model than by the standard 
model. Descriptive statistics (e.g., mean parameter estimates) for models 

4 The conclusions do not change with use of AIC instead of BIC; we report the 
latter, at a reviewer’s suggestion, because the latter generally better compen
sates for the number of parameters in the model. 
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Fig. 3. Predictions of cyclical power model and proposed modified and expanded models. 
Note. The multiplier-modified models reflect compression of values within each tens range towards the lower boundary of the range (producing the jumps from 29 to 30, 39 to 40, etc.). (The power-modified version 
would look similar except that the drops would be steeper.) The expanded models additionally show a compression of tens ranges towards the lower boundary of the full number line (producing lower placements across 
the 0–100 line). 
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fit to individual data are in Appendix A. 
As also shown in Table 2, the parameter estimates for all models are 

highly similar, and their values are as expected. For the parameter β, 
which captures degree of curvature globally, parameter estimates for 
median placements (one-cycle β = 1.16; two-cycle β = 0.90 are similar 
to those found in past work (e.g., βs = 1.10 and 0.96 respectively, in 
Slusser & Barth, 2017; see also Patalano et al., 2020). For the parameter 
δ, which captures the underweighting of the ones digit (when δ < 1) in 
the modified models, parameter estimates are <1 for median placements 
(e.g., δ = 0.68 for the one-cycle modified model using the multiplier 
function) and for nearly all individual participants, consistent with a 
leftward compression of placements within each tens range. The 
parameter estimates do not differentiate among models, but do provide 
further evidence that the preferred model based on BIC values (i.e., the 
modified model that uses the multiplier function) fits as expected with 
regard to parameter estimates. 

We further illustrate the fit of the modified model graphically. We 
focus here on the version using the multiplier function though the 
pattern would be similar for the one using the power function. 
Fig. 4illustrates the fit of the standard and modified one-cycle models to 
median placements for participants best fit by the one-cycle model, 
while Fig. 5illustrates the same for the two-cycle model. Note that there 
are two types of graphs shown: placement graphs plot placement loca
tion (i.e., participant response) against correct location of target nu
meral, while error graphs replace placement location with placement 
error. As shown in Fig. 4b, the standard one-cycle model does not fit well 
because it predicts similar magnitudes of error on both halves of the 
number line. The modified one-cycle model (Fig. 4d) fits better because 
it predicts larger errors on the first half of the line (where cyclical bias 
and left digit bias have an additive effect) and smaller errors on the 
second half (where the two biases essentially cancel one another out), 
consistent with the data. The same is true of the modified two-cycle 
model (e.g., Fig. 5b and d) to a lesser extent. While the peaks in the 
median placements do not always align precisely with model pre
dictions, and errors between targets 30 and 40 are larger than predicted, 
the modified models provide a considerable improvement in fit. 

3.4.3. Additional exploratory work: Expanded cyclical power model 
In conducting our planned modeling work, we observed that that the 

standard cyclical power model did not predict the observed large 
underplacement on the left half of the number line relative to the much 
smaller overplacement on the right half of the line. For this reason, we 
considered one additional new model, an expanded cyclical power 
model.5 This model builds on the modified model already presented but 
is also able to accommodate the asymmetrical curvature pattern also 
observed. Recall that in the modified model, a transformation of the 
ones digit reduced the contribution of this digit’s value to the overall 
value of the target numeral. In the expanded model we present now, we 
used a power transformation of all digits, rather than only the rightmost 
digit. So, for example, for ‘25’, instead of only the 5 being raised by δ, the 
20 (the tens place value) would also be raised by δ. The utility of such a 
transformation is that in addition to accommodating downward 
compression within each tens range, it can also accommodate 
compression of all tens ranges towards the lower end of the number line, 
similar to what was observed in the data. This expanded model (so 
named because it is an expansion of our modified model) has the po
tential to better fit the data, and it is in the spirit of decomposed theories of 
numerical cognition in which the magnitude associated with each digit 
is accessed individually (e.g., Moeller, Huber, Nuerk, & Willmes, 2011; 
Verguts & De Moor, 2005). 

The equation for the one- and two-cycle versions of the expanded 
model are shown below. All abbreviations and starting values are the 
same as for the modified model unless otherwise noted. What is new 
about the equations is as follows. First, there is now a transformation not 
just of the ones (xo) place value for each numeral, but also of tens (xt) 
and hundreds (xh) place values (the latter is included just to accom
modate ‘100’). Second, we previously did not include any trans
formation of the ones digit for lower and upper boundaries (LB and HB) 
because 0, 50, and 100 (the boundaries used here) all had a 0 for the 
ones digit and so would not be affected by any transformation. Now, 
because tens and hundreds digits are also transformed, it is important to 
explicitly include transformation of boundary values in the equation. 
Third, the last symbol in the two-cycle equation, which was previously 
LB, has been replaced with CS, standing for ‘cycle start’. The reason for 
the change is that, in the cyclical model, it is assumed that the cycle is 
repeated for each half of the line, so the starting points of the cycles must 
be 0 and 50 if the pattern is to repeat at the halfway point. Essentially, in 

Table 2 
Fits of standard and modified versions of each cyclical model to median placements and to individual participants’ data.   

Using group medians Using individual data 

Model type n β δ BIC Preferred over standard modela δ consistent with left digit effectb 

Identity 59 – – 214 – – 
One-cycle standard 42 1.16 – 175 – – 
One-cycle power-modified 42 1.16 0.81 109 83% 100% 
One-cycle multiplier-modified 42 1.16 0.68 94 83% 98% 
One-cycle power-expanded 42 1.15 1.05 82 86% 98% 
Two-cycle standardc 17 0.90 – 146 – – 
Two-cycle power-modified 17 0.91 0.88 118 71% 100% 
Two-cycle multiplier-modified 17 0.91 0.78 110 76% 94% 
Two-cycle power-expanded 17 0.92 1.07 90 82% 100% 

Note. Each participant was included in either the one-cycle or two-cycle group based on which standard model better fit their data (no participants were better fit by the 
identity model). 

a Percentage of participants whose data were better fit by the revised model than by the standard one. 
b Left digit effect is consistent with δ < 1 for modified model, and δ > 1 for the expanded one. 
c Participants were placed in the two-cycle group based on the fit of the standard model (per our preregistered procedure), but 5/17 participants were better fit by a 

one-cycle modified model than by any two-cycle models, and 3/17 were better fit by a one-cycle expanded model than by any two-cycle models. Thus, the table 
findings may slightly underestimate the number of participants best fit by modified and expanded models. 

5 We thank Dale J. Cohen for suggesting this model. 
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the below model, CS represents the true physical start or midpoint of the 
line rather than a numeral.  

For the transformation, we chose to use the power function here (f 
(x) = xδ) even though the multiplier function was preferred earlier. We 
did this because, in the present context, the power function is more 
straightforwardly motivated than the multiplier function. With the 
earlier modified model, the transformation could be thought of as a 
relative weighting of the ones and tens values in the estimation of 
overall magnitude, and the relative weighing could be achieved in many 
ways including through a power or multiplier function. However, with 
the expanded model, the transformation may be better thought of as 
similar to the magnitude bias associated with the whole numeral and 
represented by β, now simply extended to individual digits (although 
still using a separate parameter δ since the transformation may not be 
the same for digits). Unlike the modified model in which δ < 1 produced 
downward compression, in the expanded model downward compression 
occurs when δ > 1. This is because both the target value and the whole 
(e.g., 75 as a part of 100) are transformed. When δ > 1, the trans
formation results in a greater increase in the estimate of the whole than 
of the target, and so the target is predicted to be placed lower on the line 
(it is a smaller proportion of the range) than when δ = 1. While we did 
not formally set δ ≥ 1 here, we again (as with the modified model) as
sume that people do not treat the magnitude of any numeral between 
0 and 100 as greater than that of the next larger numeral. Because this 
assumption can be violated when δ < 1 here, we expect that δ will be ~1 
when there is no left digit effect, otherwise δ > 1. 

3.4.4. Fitting of the expanded cyclical power model to data 
To model placement data using the described models, within the one- 

cycle and two-cycle groups separately, we computed median placements 
and fit the power-expanded model to both median placements and in
dividual participants’ data. As shown in Table 2, the expanded model fit 
the data considerably better than the standard model. For the one-cycle 
group, for the expanded model fit to median placements, ΔBIC was 93 
relative to the standard model, and 86% of participants were individu
ally better fit by the expanded model than by the standard model. 
Similarly, but to a lesser degree, for the two-cycle group, for the 
expanded model fit to median placements, ΔBIC was 56 relative to the 
standard model, and 82% of participants were individually better fit by 
the expanded model than by the standard model. Descriptive statistics 
for models fit to individual data are in Supplementary Materials. 

As also shown in Table 2, the parameter estimates for the model are 
as expected. For the parameter β, which captures degree of curvature 

globally, parameter estimates for median placements (one-cycle β =
1.15; two-cycle β = 0.92 are similar to those found in the standard and 

modified models. For the parameter δ, which is consistent with a left 
digit effect when δ > 1 in the expanded model, parameter estimates are 
>1 for median placements (δ = 1.05 for the one-cycle model and δ =
1.07 for the two-cycle model), and for nearly all individual participants, 
consistent with a leftward compression of placements both within each 
tens range and across the whole number range. The parameter estimates 
do not differentiate among models, but do provide further evidence that 
the expanded model fits as expected with regard to parameter estimates. 

The power-expanded model also fit better than the multiplier- 
modified model (the best fitting model to this point). For the one- 
cycle group, the ΔBIC associated with the expanded model fit to me
dian placements was 12 (relative to the multiplier-modified model), and 
67% of participants were better fit by the expanded model. Similarly, for 
the two-cycle group, the ΔBIC associated with the expanded model fit to 
median placements was 20, with 94% of participants better fit by the 
expanded model than by the multiplier-modified model. The asym
metrical shape of the curve of the expanded model (now produced 
largely by the transformation of the tens digit rather than the ones digit) 
generally matched the data well. However, as suggested by Figs. 4 and 5, 
the expanded model’s improved fit is, in part, in number ranges already 
quite well fit by the modified model (e.g., close to 0 and to 100), rather 
than in ranges in which the multiplier-model fit poorly (e.g., in the 
30–40 range). And, in some ranges, such as the 40–80 range of the one- 
cycle model, the expanded model considerably underestimated place
ments. In sum, the expanded model did provide a better fit overall, but 
some challenges remain for future work in terms of replicating and 
explaining some of the more extreme response errors in performance. 

At this time, to ensure our findings were not specific to the procedure 
we used to compare models, we also simply counted the number of 
participants for whom each model was preferred, looking across all 
versions of one- and two-cycle models (i.e., not breaking down partici
pants by cyclical group). The findings, as shown in Table 3, are that the 
expanded model was the preferred model for 73% of all participants, 
consistent with other findings. 

3.5. Additional exploratory analyses 

Given that we knew the size of each participant’s tens difference 
score, and the estimated δ parameter for each participant’s best fitting 
model between the one-cycle modified and two-cycle modified model, 
we considered the relationship between these two measures. If the 
model well captures the left digit effect, individuals with larger tens 

One − cycle expanded : y =
(
((f (xh) + f (xt) + f (xo) )–(f (LBh) + f (LBt) + f (LBo) ) )

β
/(

((f (xh) + f (xt) + f (xo) )–(f (LBh) + f (LBt) + f (LBo) ) )
β

+((f (UBh) + f (UBt) + f (UBo) )–(f (xh) + f (xt) + f (xo) ) )
β
))

• 100   

Two − cycle expanded : y =
(
((f (xh) + f (xt) + f (xo) )–(f (LBh) + f (LBt) + f (LBo) ) )

β
/(

((f (xh) + f (xt) + f (xo) )–(f (LBh) + f (LBt) + f (LBo) ) )
β

+((f (UBh) + f (UBt) + f (UBo) )–(f (xh) + f (xt) + f (xo) ) )
β
)
• 0.5

)
• 100+CS   
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Fig. 4. One-cycle standard, multiplier-modified, and expanded model fit to median placements. 
Note. The above graphs fit the models to the median responses for the group best fit by a one-cycle model (n = 42). Relative to the standard model, ΔBIC was 81 for 
the multiplier-modified model, and ΔBIC was 93 for the expanded model, indicating improved fits. 
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Fig. 5. Two-cycle standard, multiplier-modified, and expanded model fit to median placements. 
Note. The above graphs fit the models to the median responses for the group best fit by a one-cycle model (n = 17). Relative to the standard model, ΔBIC was 36 for 
the multiplier-modified model, and ΔBIC was 56 for the expanded model, indicating improved fits. 
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difference scores might have lower (closer to 0) δ values. The correla
tion, although suggestive, was not statistically significant for either the 
multiplier-modified model (r(58) = − 0.16, p = .242), or the power- 
modified model (r(58) = − 0.21, p = .144), and was close to 0 for the 
power-expanded model (r(58) = 0.06, p = .649; for |skewness| < 1.10 
for all variables); a larger sample would be needed to detect a rela
tionship of these sizes. We also tested whether the participants better fit 
by the two-cycle model might have a smaller left digit effect than those 
best fit by the one-cycle model, consistent with the two-cycle pattern 
reflecting use of a more sophisticated placement strategy. The difference 
was also not statistically significant (Ms = 0.68 vs. 0.79 respectively); t 
(57) = 0.20, p = .846. 

4. Discussion 

In the present study, we collected number line estimation data for all 
target numerals between 0 and 100 on a bounded number line. Our goals 
were to replicate and further understand the phenomenon of the left 
digit effect in the 0–100 context as measured in prior work through 
average tens difference scores, to assess whether target placements are 
compressed to the left for each tens range, and to develop and test 
modifications of the cyclical model to accommodate the proposed 
compression. What we found, first, was a replication of the phenomenon 
of the left digit effect: targets with different leftmost digits were placed 
farther apart than warranted. Second, we expanded our understanding 
of the effect in multiple ways, including that the phenomenon extends to 
pairs as many as five units away from boundaries (e.g., 45/55), and that 
the effect is driven by larger than warranted differences in placements of 
below-boundary and boundary targets, whereas placements of boundary 
and above-boundary targets are actually less different than warranted. 
Third, we found that our two new versions of the standard cyclical 
power model—a modified version that underweights the ones digit of 
targets and an expanded version that transforms all digits—both pre
dicted placements considerably better than the standard model, with the 
expanded version providing the better fit overall. 

Recall that the standard cyclical power model of Hollands and Dyre 
(2000) was developed to explain estimates of physical magnitudes in 
proportional relationships (e.g., relative length of a tone, proportion of 
red to blue dots in a display), and does so quite successfully. In the 
model, the parameter β indexes the degree and direction of cyclical bias, 
and the bias is attributed to the use of imprecise magnitude estimates in 
proportion judgments. What warranted modifying the model here was 
the past extension of the model to symbolic magnitude representations 
(Barth & Paladino, 2011; Cohen & Blanc-Goldhammer, 2011), and the 
discovery of a bias specific to these representations (Lai et al., 2018), 
namely, the left digit effect. The versions of cyclical power models 
developed in the present work, in which digits are input individually so 
that they can be independently transformed (e.g., by δ), thus have more 
specific application than the original cyclical power model. However, 
the modifications are particularly important for modeling patterns of left 
digit bias, as the latter are most easily observed as deviations of place
ments from a cyclical pattern (rather than from an identity line). 

4.1. Modified and expanded cyclical power models 

Our modified cyclical power model, the first model we tested, fit 
better than the standard model and explained a number of patterns in 
placement data. In addition to predicting the large-scale cyclical pattern 
and the compression of placements within each tens range, the model 
also predicted the seemingly greater S-shaped curvature on the left side 
of the number line than on the right side (a pattern also observed in Lai 
et al., 2018). The model explains this pattern as arising from the additive 
effects of the two biases: when both biases (cyclical bias and left digit 
bias) are in the direction of underestimation, underplacement is very 
large. However, when one bias is in the direction of overestimation and 
the other is towards underestimation, the biases essentially offset one 
another and placements remain close to the identity line. While the new 
model predicts these central patterns, there were some local patterns not 
fully predicted, most notably large underplacements of targets in the 30 
to 40 range. 

The second model we tested, the expanded cyclical power model, fit 
the data somewhat better than the modified model. Like the modified 
model, the expanded model also predicted the large-scale cyclical 
pattern, the downward compression of placements within each tens 
range, and the asymmetrical S-shaped curve. Unlike the modified model, 
the expanded model explains the asymmetrical pattern as arising largely 
from an overestimation of the magnitudes of place values of numerals, 
including boundary numerals, resulting in a lowering of the cyclical 
curve across the number line (e.g., 20/100 = 20%, but 201.1/1001.1 =

17%). In this model, the left digit effect arises not because the ones digit 
is multiplied by a δ < 1 but, rather, because the overweighting of the tens 
value leads to large increases in predicted placement across left digit 
boundaries. While this model does fit better than the modified model, 
and better captures the overall shape of the global curve, areas for 
improvement remain (again including the 30–40 range). We further 
consider both types of models in the remainder of the discussion. 

4.2. Interpretation of the parameter δ 

The modified and expanded models were motivated by the descrip
tion of the left digit effect as arising from the weighting of digits during 
the conversion of numerical symbols to magnitudes (e.g., Thomas & 
Morwitz, 2005). Thomas and Morwitz suggested that the left digit effect 
might require a simple modification of a holistic cognitive model of 
number processing (Brysbaert, 1995; Dehaene, Dupoux, & Mehler, 
1990) to accommodate the weighting. In holistic models, each multi
digit number is recognized as a whole and mapped onto a single internal 
quantity. Such models are consistent with some number line data, 
including finger-process-tracing findings of early finger movement to
wards an imprecise holistic magnitude (Dotan & Dehaene, 2013; see 
also, e.g., Ganor-Stern, Pinhas, & Tzelgov, 2009; Reynvoet & Brysbaert, 
1999). However, because holistic models do not explicitly represent 
individual digits or place value, they cannot be straightforwardly 
modified to accommodate the left digit effect. 

Holistic models have been found to be insufficient for explaining 
other findings as well, such as a well-known decade-unit compatibility 
effect in number comparison tasks in which judgment (of the larger 
overall magnitude) is faster when tens- and ones-digit comparisons 
suggest the same response (e.g., 42 vs. 57) over different ones (e.g., 57 
vs. 62; Nuerk, Weger, & Willmes, 2001; Nuerk, Weger, & Willmes, 
2004). A range of models that accommodate such findings include 
decomposed models in which only quantities associated with individual 
digits are activated and manipulated (Moeller et al., 2011; Verguts & De 
Moor, 2005), hybrid models in which both digit and holistic magnitudes 
are available (Nuerk et al., 2001; Nuerk & Willmes, 2005), and models in 
which digit magnitudes are integrated into an overall magnitude (Dotan 
& Dehaene, 2020). It has also been proposed that one might adopt either 
a holistic or a decomposed strategy based on task demands (e.g., Dotan 
& Dehaene, 2013). The present work does not speak to whether 

Table 3 
Number of participants best fit by each model.  

Model type Best Fit 

One-cycle standard 6 
One-cycle power-modified 1 
One-cycle multiplier-modified 6 
One-cycle power-expanded 26 
Two-cycle standard 3 
Two-cycle power-modified 0 
Two-cycle multiplier-modified 0 
Two-cycle power-expanded 17 

Note. The majority (73%) were best fit by the power-expanded model. 
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digit-level magnitudes are directly available and used to guide place
ments versus that they are used to compute overall magnitude but, at 
minimum, shows that digit-level information contributes to placements. 

A recent number-to-quantity model (Dotan & Dehaene, 2020; see 
also McCloskey, 1992; McCloskey, Sokol, & Goodman, 1986) is useful 
for reflecting on interpretations of δ. This model integrates components 
of holistic and decomposed approaches, and explicitly represents place 
value in the conversion of numerals into overall magnitude. Specifically, 
digits are multiplied by place units following base ten rules (e.g., 25 =
2*10 + 5*1), before these component magnitudes (which are also 
available to guide task performance) are merged into a whole number 
quantity. While the model does not incorporate imprecision, there are at 
least two places where it might be added: place weighting and compo
nent magnitude estimation. Imprecision in place weighting (e.g., 
replacing the *1 with *0.8) is consistent with the findings that, although 
place rules are explicitly learned, place value information is also 
implicitly acquired (Yuan, Prather, Mix, & Smith, 2020) and frequently 
accessed automatically (e.g., García-Orza, Estudillo, Calleja, & Rodrí
guez, 2017; Kallai & Tzelgov, 2012; Nuerk, Moeller, & Willmes, 2015). 
Imprecision in component magnitude estimation is not novel in that it is 
similar to the transformation of overall magnitudes by β, except at the 
level of components (e.g., for 25, both 20 and 5 might be transformed). 

Each possibility fits well with one of our revised models. For our 
modified model, especially the multiplier-modified version, the account 
that fits most naturally is imprecision in place weighting. In this model, 
the representation of a numeral such as 25 (characterized earlier as 20 +
δ * 5) can be rewritten more generally as 2*δt + 5*δo, where δt = 10 but 
δo < 1. This model is less well characterized as imprecision in component 
magnitude estimation in that the bias extends only to the rightward digit 
rather than, as one might expect, to all place values. For the expanded 
model, the more straightforward account is imprecision in component 
magnitude estimation, where each component magnitude is raised to δ 
(e.g., 20δ + 5δ). 

4.3. Further testing and extending the models 

The current version of the modified cyclical power model is specific 
to the 0–100 number range in that inputs to the model are tens and ones 
place values. One question is that of how this particular model might be 
generalized, especially to the commonly used 0–1000 range. It is likely 
that both the tens and ones place values are underweighted given that 
the left digit effect could not be explained by the ones digit alone (the 
difference score is much larger than in the present study; see, e.g., 
Kayton et al., 2022). A more general version of the multiplier-modified 
model might be written as: d1*u1 + d2*u2*δ + d3*u3*δ… where d is the 
digit in a particular position (d1 being the leftmost digit), u is the number 
of place units for that position, and δ is the weighting parameter. 
Although all rightward digits are weighted the same amount in the 
example, it is an empirical question as to whether the weights should be 
the same. 

The current version of the expanded model, in contrast, already 
readily generalizes to numerals of any length (each place value is simply 
raised to δ). However, we have not addressed many questions that 
remain about this model that might be desirable to test in the future. For 
example, we kept the magnitude estimation bias δ the same for all the 
digits, but used a different parameter for the overall magnitude β. Given 
similarity of estimates of δ and β (e.g., 1.05 vs. 1.15 respectively for the 
one-cycle version of the extended model), one might ask if a single 
parameter might instead be used with little change in fit. We also made 
the assumption that the curve for the two-cycle model crosses at the 
midpoint of the line given that the midpoint is represented spatially 
rather than as a presented numeral, but this could be tested as well. For 
both models, it will be valuable to also collect processing tracing data 
such as eye movements (e.g., Sullivan et al., 2011) and finger tracking 
(e.g., Dotan & Dehaene, 2013) to better understand when and how the 
effect might emerge over the time course of responding. 

Given the better fit of the expanded model over the multiplier- 
modified model, one might wonder why we continue to advance both 
models. A primary reason is that the expanded model was largely 
motivated by the asymmetrical S-shaped curve (where underplacement 
is larger than overplacement). However, this pattern has also been found 
using similar spatial tasks (Barth, Lesser, Taggart, & Slusser, 2015; Zax 
et al., 2019; see also Crawford & Duffy, 2010) where one is shown an 
unlabeled line with a hashmark and must reproduce the hashmark’s 
location on a new line. That there are no numerals in this task suggests 
that the asymmetry in the curve may have a single source unrelated to 
the translation of numerals to magnitudes. There are many ways to 
capture asymmetry in a model besides the approach taken in our 
expanded model, perhaps most simply by using a different estimate of β 
for each part of the line. It thus remains possible that the multiplier- 
modified model, revised to include a different means of producing the 
asymmetry seen in the data, has the potential to extend to explain more 
phenomena than the expanded model. This is something that will be 
important to consider further in future work. 

While the focus of the present work is number line estimation, left 
digit effects are also seen in complex judgment contexts, in domains 
ranging from consumer behavior to medical treatment decisions (see 
Patalano et al., 2022, for review). A study particularly relevant to the 
present work demonstrated that while the relationship between the set 
market value of a used car and its odometer reading is generally linear, 
large discontinuities exist at left digit boundaries (Lacetera, Pope, & 
Sydnor, 2012). The compression towards the lower boundary, strikingly 
similar to the pattern here, was well-modeled using an attentional 
weight to underweight rightward digits. The common finding raises 
many interesting questions about the relationship between that pattern 
and the processes that gave rise to it and the ones seen in the number line 
task. 

In sum, rather than being an isolated phenomenon driven by the 
placements of a few numerals, the left digit effect in number line esti
mation emerges from a systematic leftward compression of placements 
both across the line as a whole and within each left digit range. Research 
on the left digit effect contributes to understanding number line esti
mation behavior, as well as to the process of conversion of symbols to 
magnitudes and to our understanding of behavior in the many judgment 
contexts in which left digit effects emerge. 
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